mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
303 lines
13 KiB
303 lines
13 KiB
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
import os
|
|
import os.path as osp
|
|
from typing import List
|
|
|
|
from colossalai.legacy.context import ParallelMode
|
|
from colossalai.legacy.core import global_context as gpc
|
|
from colossalai.legacy.registry import HOOKS
|
|
from colossalai.legacy.trainer.hooks._metric_hook import ThroughputMetric
|
|
from colossalai.legacy.utils import is_dp_rank_0, is_no_pp_or_last_stage, is_tp_rank_0, report_memory_usage
|
|
from colossalai.logging import DistributedLogger
|
|
from colossalai.utils import MultiTimer
|
|
|
|
from ._base_hook import BaseHook
|
|
from ._commons_ import _format_number
|
|
|
|
|
|
class LogByEpochHook(BaseHook):
|
|
"""Hook to log by epoch.
|
|
|
|
Args:
|
|
logger (:class:`colossalai.logging.DistributedLogger`): Logger for recording the log information.
|
|
interval (int, optional): Interval of printing log information, defaults to 1.
|
|
priority (int, optional): Priority in the printing, hooks with small priority will be printed in front,
|
|
defaults to 1. If different hooks share same priority, the order of printing would
|
|
depend on the hooks order in the hook list.
|
|
"""
|
|
|
|
def __init__(self, logger, interval: int = 1, priority: int = 1):
|
|
super().__init__(priority)
|
|
self.logger = logger
|
|
self._interval = interval
|
|
|
|
def _is_epoch_to_log(self, trainer):
|
|
return trainer.cur_epoch % self._interval == 0
|
|
|
|
|
|
@HOOKS.register_module
|
|
class LogMetricByStepHook(BaseHook):
|
|
"""Hook to log metric by step.
|
|
|
|
Args:
|
|
priority (int, optional): Priority in the printing, hooks with small priority will be printed in front,
|
|
defaults to 10. If different hooks share same priority, the order of printing would
|
|
depend on the hooks order in the hook list.
|
|
"""
|
|
|
|
def __init__(self, priority: int = 10):
|
|
super().__init__(priority)
|
|
|
|
def after_train_iter(self, trainer, *args):
|
|
trainer.states["step_metrics"] = dict()
|
|
for metric_name, metric_calculator in trainer.states["metrics"]["train"].items():
|
|
if isinstance(metric_calculator, ThroughputMetric):
|
|
trainer.states["step_metrics"][metric_name.lower()] = metric_calculator.get_last_step_info()
|
|
else:
|
|
trainer.states["step_metrics"][metric_name.lower()] = metric_calculator.get_last_step_value()
|
|
|
|
def after_test_iter(self, trainer, *args):
|
|
trainer.states["step_metrics"] = dict()
|
|
for metric_name, metric_calculator in trainer.states["metrics"]["test"].items():
|
|
if isinstance(metric_calculator, ThroughputMetric):
|
|
trainer.states["step_metrics"][metric_name.lower()] = metric_calculator.get_last_step_info()
|
|
else:
|
|
trainer.states["step_metrics"][metric_name.lower()] = metric_calculator.get_last_step_value()
|
|
|
|
|
|
@HOOKS.register_module
|
|
class LogMetricByEpochHook(LogByEpochHook):
|
|
"""Specialized hook to record the metric to log.
|
|
|
|
Args:
|
|
logger (:class:`colossalai.logging.DistributedLogger`): Logger for recording the log information.
|
|
interval (int, optional): Interval of printing log information, defaults to 1.
|
|
priority (int, optional): Priority in the printing, hooks with small priority will be printed in front,
|
|
defaults to 10. If different hooks share same priority, the order of printing would
|
|
depend on the hooks order in the hook list.
|
|
"""
|
|
|
|
def __init__(self, logger, interval: int = 1, priority: int = 10) -> None:
|
|
super().__init__(logger, interval, priority)
|
|
self._is_rank_to_log = is_dp_rank_0() and is_tp_rank_0() and is_no_pp_or_last_stage()
|
|
|
|
def _get_str(self, trainer, mode):
|
|
msg = []
|
|
for metric_name, metric_calculator in trainer.states["metrics"][mode].items():
|
|
msg.append(f"{metric_name} = {_format_number(metric_calculator.get_accumulated_value())}")
|
|
msg = " | ".join(msg)
|
|
return msg
|
|
|
|
def after_train_epoch(self, trainer):
|
|
if self._is_epoch_to_log(trainer):
|
|
msg = self._get_str(trainer=trainer, mode="train")
|
|
|
|
if self._is_rank_to_log:
|
|
self.logger.info(f"[Epoch {trainer.cur_epoch} / Train]: {msg}")
|
|
# f'Training - Epoch {trainer.cur_epoch} - {self.__class__.__name__}: {msg}')
|
|
|
|
def after_test_epoch(self, trainer):
|
|
if self._is_epoch_to_log(trainer):
|
|
msg = self._get_str(trainer=trainer, mode="test")
|
|
if self._is_rank_to_log:
|
|
self.logger.info(f"[Epoch {trainer.cur_epoch} / Test]: {msg}")
|
|
# f'Testing - Epoch {trainer.cur_epoch} - {self.__class__.__name__}: {msg}')
|
|
|
|
|
|
@HOOKS.register_module
|
|
class TensorboardHook(BaseHook):
|
|
"""Specialized hook to record the metric to Tensorboard.
|
|
|
|
Args:
|
|
log_dir (str): Directory of log.
|
|
ranks (list): Ranks of processors.
|
|
parallel_mode (:class:`colossalai.legacy.context.parallel_mode.ParallelMode`, optional): Parallel mode used in trainer,
|
|
defaults to colossalai.legacy.context.parallel_mode.ParallelMode.GLOBAL.
|
|
priority (int, optional): Priority in the printing, hooks with small priority will be printed in front,
|
|
defaults to 10. If different hooks share same priority, the order of printing would
|
|
depend on the hooks order in the hook list.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
log_dir: str,
|
|
ranks: List = None,
|
|
parallel_mode: ParallelMode = ParallelMode.GLOBAL,
|
|
priority: int = 10,
|
|
) -> None:
|
|
super().__init__(priority=priority)
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
# create log dir
|
|
if not gpc.is_initialized(ParallelMode.GLOBAL) or gpc.get_global_rank() == 0:
|
|
os.makedirs(log_dir, exist_ok=True)
|
|
|
|
# determine the ranks to generate tensorboard logs
|
|
self._is_valid_rank_to_log = False
|
|
if not gpc.is_initialized(parallel_mode):
|
|
self._is_valid_rank_to_log = True
|
|
else:
|
|
local_rank = gpc.get_local_rank(parallel_mode)
|
|
|
|
if ranks is None or local_rank in ranks:
|
|
self._is_valid_rank_to_log = True
|
|
|
|
# check for
|
|
if (
|
|
gpc.is_initialized(ParallelMode.PIPELINE)
|
|
and not gpc.is_last_rank(ParallelMode.PIPELINE)
|
|
and self._is_valid_rank_to_log
|
|
):
|
|
raise ValueError("Tensorboard hook can only log on the last rank of pipeline process group")
|
|
|
|
if self._is_valid_rank_to_log:
|
|
# create workspace on only one rank
|
|
if gpc.is_initialized(parallel_mode):
|
|
rank = gpc.get_local_rank(parallel_mode)
|
|
else:
|
|
rank = 0
|
|
|
|
# create workspace
|
|
log_dir = osp.join(log_dir, f"{parallel_mode}_rank_{rank}")
|
|
os.makedirs(log_dir, exist_ok=True)
|
|
|
|
self.writer = SummaryWriter(log_dir=log_dir, filename_suffix=f"_rank_{rank}")
|
|
|
|
def _log_by_iter(self, trainer, mode: str):
|
|
for metric_name, metric_calculator in trainer.states["metrics"][mode].items():
|
|
if metric_calculator.epoch_only:
|
|
continue
|
|
val = metric_calculator.get_last_step_value()
|
|
|
|
if self._is_valid_rank_to_log:
|
|
self.writer.add_scalar(f"{metric_name}/{mode}", val, trainer.cur_step)
|
|
|
|
def _log_by_epoch(self, trainer, mode: str):
|
|
for metric_name, metric_calculator in trainer.states["metrics"][mode].items():
|
|
if metric_calculator.epoch_only:
|
|
val = metric_calculator.get_accumulated_value()
|
|
if self._is_valid_rank_to_log:
|
|
self.writer.add_scalar(f"{metric_name}/{mode}", val, trainer.cur_step)
|
|
|
|
def after_test_iter(self, trainer, *args):
|
|
self._log_by_iter(trainer, mode="test")
|
|
|
|
def after_test_epoch(self, trainer):
|
|
self._log_by_epoch(trainer, mode="test")
|
|
|
|
def after_train_iter(self, trainer, *args):
|
|
self._log_by_iter(trainer, mode="train")
|
|
|
|
def after_train_epoch(self, trainer):
|
|
self._log_by_epoch(trainer, mode="train")
|
|
|
|
|
|
@HOOKS.register_module
|
|
class LogTimingByEpochHook(LogByEpochHook):
|
|
"""Specialized hook to write timing record to log.
|
|
|
|
Args:
|
|
timer (:class:`colossalai.utils.MultiTimer`): Timer for the hook.
|
|
logger (:class:`colossalai.logging.DistributedLogger`): Logger for recording the log information.
|
|
interval (int, optional): Interval of printing log information, defaults to 1.
|
|
priority (int, optional): Priority in the printing, hooks with small priority will be printed in front
|
|
defaults to 10. If different hooks share same priority, the order of printing would
|
|
depend on the hooks order in the hook list.
|
|
log_eval (bool, optional): Whether writes in evaluation, defaults to True.
|
|
ignore_num_train_steps (int, optional): Number of training steps to ignore, defaults to 0.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
timer: MultiTimer,
|
|
logger: DistributedLogger,
|
|
interval: int = 1,
|
|
priority: int = 10,
|
|
log_eval: bool = True,
|
|
ignore_num_train_steps: int = 0,
|
|
) -> None:
|
|
super().__init__(logger=logger, interval=interval, priority=priority)
|
|
self._timer = timer
|
|
self._log_eval = log_eval
|
|
self._is_rank_to_log = is_dp_rank_0() and is_tp_rank_0() and is_no_pp_or_last_stage()
|
|
|
|
# extra handling to avoid the unstable readings of the first
|
|
# few training steps to affect the history mean time
|
|
self._ignore_num_train_steps = ignore_num_train_steps
|
|
self._is_train_step_history_trimmed = False
|
|
|
|
def _get_message(self, mode):
|
|
msg = []
|
|
for timer_name, timer in self._timer:
|
|
if timer_name.startswith(mode):
|
|
last_elapsed_time = timer.get_elapsed_time()
|
|
if timer.has_history:
|
|
if timer_name == "Train-step" and not self._is_train_step_history_trimmed:
|
|
timer._history = timer._history[self._ignore_num_train_steps :]
|
|
self._is_train_step_history_trimmed = True
|
|
history_mean = timer.get_history_mean()
|
|
timer.get_history_sum()
|
|
msg.append(
|
|
f"{timer_name}: last = {_format_number(last_elapsed_time)} s, mean = {_format_number(history_mean)} s"
|
|
)
|
|
else:
|
|
msg.append(f"{timer_name}: last = {_format_number(last_elapsed_time)} s")
|
|
|
|
msg = " | ".join(msg)
|
|
return msg
|
|
|
|
def after_train_epoch(self, trainer):
|
|
"""Writes log after finishing a training epoch."""
|
|
if self._is_epoch_to_log(trainer) and self._is_rank_to_log:
|
|
msg = self._get_message("Train")
|
|
self.logger.info(f"[Epoch {trainer.cur_epoch} / Train]: {msg} | #steps/epoch = {trainer.steps_per_epoch}")
|
|
|
|
def after_test_epoch(self, trainer):
|
|
"""Writes log after finishing a testing epoch."""
|
|
if self._is_epoch_to_log(trainer) and self._is_rank_to_log and self._log_eval:
|
|
msg = self._get_message("Test")
|
|
self.logger.info(f"[Epoch {trainer.cur_epoch} / Test]: {msg}")
|
|
|
|
|
|
@HOOKS.register_module
|
|
class LogMemoryByEpochHook(LogByEpochHook):
|
|
"""Specialized Hook to write memory usage record to log.
|
|
|
|
Args:
|
|
logger (:class:`colossalai.logging.DistributedLogger`): Logger for recording the log information.
|
|
interval (int, optional): Interval of printing log information, defaults to 1.
|
|
priority (int, optional): Priority in the printing, hooks with small priority will be printed in front
|
|
defaults to 1. If different hooks share same priority, the order of printing would
|
|
depend on the hooks order in the hook list.
|
|
log_eval (bool, optional): Whether writes in evaluation, defaults to True.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
logger: DistributedLogger,
|
|
interval: int = 1,
|
|
priority: int = 10,
|
|
log_eval: bool = True,
|
|
report_cpu: bool = False, # no reference
|
|
) -> None:
|
|
super().__init__(logger=logger, interval=interval, priority=priority)
|
|
self._log_eval = log_eval
|
|
self._is_rank_to_log = is_dp_rank_0() and is_tp_rank_0()
|
|
|
|
def before_train(self, trainer):
|
|
"""Resets before training."""
|
|
if self._is_epoch_to_log(trainer) and self._is_rank_to_log:
|
|
report_memory_usage("Before-train", self.logger)
|
|
|
|
def after_train_epoch(self, trainer):
|
|
"""Writes log after finishing a training epoch."""
|
|
if self._is_epoch_to_log(trainer) and self._is_rank_to_log:
|
|
report_memory_usage(f"[Epoch {trainer.cur_epoch} / Train]", self.logger)
|
|
|
|
def after_test(self, trainer):
|
|
"""Reports after testing."""
|
|
if self._is_epoch_to_log(trainer) and self._is_rank_to_log and self._log_eval:
|
|
report_memory_usage(f"[Epoch {trainer.cur_epoch} / Test]", self.logger)
|