Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

40 lines
1.3 KiB

"""
Motivated by VllM (https://github.com/vllm-project/vllm), This module is trying to resolve the tokenizer issue.
license: MIT, see LICENSE for more details.
"""
from transformers import AutoTokenizer
_FAST_LLAMA_TOKENIZER = "hf-internal-testing/llama-tokenizer"
def get_tokenizer(
tokenizer=None,
tokenizer_name: str = "",
trust_remote_code: bool = False,
use_fast: bool = True,
):
if tokenizer is not None:
tokenizer = tokenizer
else:
if "llama" in tokenizer_name.lower() and use_fast == True:
print(
"For some LLaMA-based models, initializing the fast tokenizer may "
"take a long time. To eliminate the initialization time, consider "
f"using '{_FAST_LLAMA_TOKENIZER}' instead of the original "
"tokenizer. This is done automatically in Colossalai."
)
tokenizer_name = _FAST_LLAMA_TOKENIZER
try:
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_name, use_fast=use_fast, trust_remote_code=trust_remote_code
)
except TypeError:
use_fast = False
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_name, use_fast=use_fast, trust_remote_code=trust_remote_code
)
return tokenizer