mirror of https://github.com/hpcaitech/ColossalAI
139 lines
5.9 KiB
Python
139 lines
5.9 KiB
Python
"""
|
||
Multilingual retrieval based conversation system
|
||
"""
|
||
from typing import List
|
||
|
||
from colossalqa.data_loader.document_loader import DocumentLoader
|
||
from colossalqa.mylogging import get_logger
|
||
from colossalqa.retrieval_conversation_en import EnglishRetrievalConversation
|
||
from colossalqa.retrieval_conversation_zh import ChineseRetrievalConversation
|
||
from colossalqa.retriever import CustomRetriever
|
||
from colossalqa.text_splitter import ChineseTextSplitter
|
||
from colossalqa.utils import detect_lang_naive
|
||
from langchain.embeddings import HuggingFaceEmbeddings
|
||
from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
|
||
|
||
logger = get_logger()
|
||
|
||
|
||
class UniversalRetrievalConversation:
|
||
"""
|
||
Wrapper class for bilingual retrieval conversation system
|
||
"""
|
||
|
||
def __init__(
|
||
self,
|
||
embedding_model_path: str = "moka-ai/m3e-base",
|
||
embedding_model_device: str = "cpu",
|
||
zh_model_path: str = None,
|
||
zh_model_name: str = None,
|
||
en_model_path: str = None,
|
||
en_model_name: str = None,
|
||
sql_file_path: str = None,
|
||
files_zh: List[List[str]] = None,
|
||
files_en: List[List[str]] = None,
|
||
text_splitter_chunk_size=100,
|
||
text_splitter_chunk_overlap=10,
|
||
) -> None:
|
||
"""
|
||
Warpper for multilingual retrieval qa class (Chinese + English)
|
||
Args:
|
||
embedding_model_path: local or huggingface embedding model
|
||
embedding_model_device:
|
||
files_zh: [[file_path, name_of_file, separator],...] defines the files used as supporting documents for Chinese retrieval QA
|
||
files_en: [[file_path, name_of_file, separator],...] defines the files used as supporting documents for English retrieval QA
|
||
"""
|
||
self.embedding = HuggingFaceEmbeddings(
|
||
model_name=embedding_model_path,
|
||
model_kwargs={"device": embedding_model_device},
|
||
encode_kwargs={"normalize_embeddings": False},
|
||
)
|
||
print("Select files for constructing Chinese retriever")
|
||
docs_zh = self.load_supporting_docs(
|
||
files=files_zh,
|
||
text_splitter=ChineseTextSplitter(
|
||
chunk_size=text_splitter_chunk_size, chunk_overlap=text_splitter_chunk_overlap
|
||
),
|
||
)
|
||
# Create retriever
|
||
self.information_retriever_zh = CustomRetriever(
|
||
k=3, sql_file_path=sql_file_path.replace(".db", "_zh.db"), verbose=True
|
||
)
|
||
self.information_retriever_zh.add_documents(
|
||
docs=docs_zh, cleanup="incremental", mode="by_source", embedding=self.embedding
|
||
)
|
||
|
||
print("Select files for constructing English retriever")
|
||
docs_en = self.load_supporting_docs(
|
||
files=files_en,
|
||
text_splitter=RecursiveCharacterTextSplitter(
|
||
chunk_size=text_splitter_chunk_size, chunk_overlap=text_splitter_chunk_overlap
|
||
),
|
||
)
|
||
# Create retriever
|
||
self.information_retriever_en = CustomRetriever(
|
||
k=3, sql_file_path=sql_file_path.replace(".db", "_en.db"), verbose=True
|
||
)
|
||
self.information_retriever_en.add_documents(
|
||
docs=docs_en, cleanup="incremental", mode="by_source", embedding=self.embedding
|
||
)
|
||
|
||
self.chinese_retrieval_conversation = ChineseRetrievalConversation.from_retriever(
|
||
self.information_retriever_zh, model_path=zh_model_path, model_name=zh_model_name
|
||
)
|
||
self.english_retrieval_conversation = EnglishRetrievalConversation.from_retriever(
|
||
self.information_retriever_en, model_path=en_model_path, model_name=en_model_name
|
||
)
|
||
self.memory = None
|
||
|
||
def load_supporting_docs(self, files: List[List[str]] = None, text_splitter: TextSplitter = None):
|
||
"""
|
||
Load supporting documents, currently, all documents will be stored in one vector store
|
||
"""
|
||
documents = []
|
||
if files:
|
||
for file in files:
|
||
retriever_data = DocumentLoader([[file["data_path"], file["name"]]]).all_data
|
||
splits = text_splitter.split_documents(retriever_data)
|
||
documents.extend(splits)
|
||
else:
|
||
while True:
|
||
file = input("Select a file to load or press Enter to exit:")
|
||
if file == "":
|
||
break
|
||
data_name = input("Enter a short description of the data:")
|
||
separator = input(
|
||
"Enter a separator to force separating text into chunks, if no separator is given, the defaut separator is '\\n\\n', press ENTER directly to skip:"
|
||
)
|
||
separator = separator if separator != "" else "\n\n"
|
||
retriever_data = DocumentLoader([[file, data_name.replace(" ", "_")]]).all_data
|
||
|
||
# Split
|
||
splits = text_splitter.split_documents(retriever_data)
|
||
documents.extend(splits)
|
||
return documents
|
||
|
||
def start_test_session(self):
|
||
"""
|
||
Simple multilingual session for testing purpose, with naive language selection mechanism
|
||
"""
|
||
while True:
|
||
user_input = input("User: ")
|
||
lang = detect_lang_naive(user_input)
|
||
if "END" == user_input:
|
||
print("Agent: Happy to chat with you :)")
|
||
break
|
||
agent_response = self.run(user_input, which_language=lang)
|
||
print(f"Agent: {agent_response}")
|
||
|
||
def run(self, user_input: str, which_language=str):
|
||
"""
|
||
Generate the response given the user input and a str indicates the language requirement of the output string
|
||
"""
|
||
assert which_language in ["zh", "en"]
|
||
if which_language == "zh":
|
||
agent_response, self.memory = self.chinese_retrieval_conversation.run(user_input, self.memory)
|
||
else:
|
||
agent_response, self.memory = self.english_retrieval_conversation.run(user_input, self.memory)
|
||
return agent_response.split("\n")[0]
|