ColossalAI/applications/ColossalQA/colossalqa/memory.py

169 lines
7.6 KiB
Python

"""
Implement a memory class for storing conversation history
Support long term and short term memory
"""
from typing import Any, Dict, List
from colossalqa.chain.memory.summary import ConversationSummaryMemory
from colossalqa.chain.retrieval_qa.load_chain import load_qa_chain
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
from langchain.memory.chat_message_histories.in_memory import ChatMessageHistory
from langchain.schema import BaseChatMessageHistory
from langchain.schema.messages import BaseMessage
from langchain.schema.retriever import BaseRetriever
from pydantic import Field
class ConversationBufferWithSummary(ConversationSummaryMemory):
"""Memory class for storing information about entities."""
# Define dictionary to store information about entities.
# Store the most recent conversation history
buffered_history: BaseChatMessageHistory = Field(default_factory=ChatMessageHistory)
# Temp buffer
summarized_history_temp: BaseChatMessageHistory = Field(default_factory=ChatMessageHistory)
human_prefix: str = "Human"
ai_prefix: str = "Assistant"
buffer: str = "" # Formated conversation in str
existing_summary: str = "" # Summarization of stale converstion in str
# Define key to pass information about entities into prompt.
memory_key: str = "chat_history"
input_key: str = "question"
retriever: BaseRetriever = None
max_tokens: int = 2000
chain: BaseCombineDocumentsChain = None
input_chain_type_kwargs: List = {}
@property
def buffer(self) -> Any:
"""String buffer of memory."""
return self.buffer_as_messages if self.return_messages else self.buffer_as_str
@property
def buffer_as_str(self) -> str:
"""Exposes the buffer as a string in case return_messages is True."""
self.buffer = self.format_dialogue()
return self.buffer
@property
def buffer_as_messages(self) -> List[BaseMessage]:
"""Exposes the buffer as a list of messages in case return_messages is False."""
return self.buffered_history.messages
def clear(self):
"""Clear all the memory"""
self.buffered_history.clear()
self.summarized_history_temp.clear()
def initiate_document_retrieval_chain(
self, llm: Any, prompt_template: Any, retriever: Any, chain_type_kwargs: Dict[str, Any] = {}
) -> None:
"""
Since we need to calculate the length of the prompt, we need to initiate a retrieval chain
to calculate the length of the prompt.
Args:
llm: the language model for the retrieval chain (we won't actually return the output)
prompt_template: the prompt template for constructing the retrieval chain
retriever: the retriever for the retrieval chain
max_tokens: the max length of the prompt (not include the output)
chain_type_kwargs: the kwargs for the retrieval chain
memory_key: the key for the chat history
input_key: the key for the input query
"""
self.retriever = retriever
input_chain_type_kwargs = {k: v for k, v in chain_type_kwargs.items() if k not in [self.memory_key]}
self.input_chain_type_kwargs = input_chain_type_kwargs
self.chain = load_qa_chain(llm, chain_type="stuff", prompt=prompt_template, **self.input_chain_type_kwargs)
@property
def memory_variables(self) -> List[str]:
"""Define the variables we are providing to the prompt."""
return [self.memory_key]
def format_dialogue(self, lang: str = "en") -> str:
"""Format memory into two parts--- summarization of historical conversation and most recent conversation"""
if len(self.summarized_history_temp.messages) != 0:
for i in range(int(len(self.summarized_history_temp.messages) / 2)):
self.existing_summary = (
self.predict_new_summary(
self.summarized_history_temp.messages[i * 2 : i * 2 + 2], self.existing_summary, stop=["\n\n"]
)
.strip()
.split("\n")[0]
.strip()
)
for i in range(int(len(self.summarized_history_temp.messages) / 2)):
self.summarized_history_temp.messages.pop(0)
self.summarized_history_temp.messages.pop(0)
conversation_buffer = []
for t in self.buffered_history.messages:
if t.type == "human":
prefix = self.human_prefix
else:
prefix = self.ai_prefix
conversation_buffer.append(prefix + ": " + t.content)
conversation_buffer = "\n".join(conversation_buffer)
if len(self.existing_summary) > 0:
if lang == "en":
message = f"A summarization of historical conversation:\n{self.existing_summary}\nMost recent conversation:\n{conversation_buffer}"
elif lang == "zh":
message = f"历史对话概要:\n{self.existing_summary}\n最近的对话:\n{conversation_buffer}"
else:
raise ValueError("Unsupported language")
return message
else:
message = conversation_buffer
return message
def get_conversation_length(self):
"""Get the length of the formatted conversation"""
prompt = self.format_dialogue()
length = self.llm.get_num_tokens(prompt)
return length
def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]:
"""Load the memory variables.
Summarize oversize conversation to fit into the length constraint defined by max_tokene
Args:
inputs: the kwargs of the chain of your definition
Returns:
a dict that maps from memory key to the formated dialogue
the formated dialogue has the following format
if conversation is too long:
A summarization of historical conversation:
{summarization}
Most recent conversation:
Human: XXX
Assistant: XXX
...
otherwise
Human: XXX
Assistant: XXX
...
"""
# Calculate remain length
if "input_documents" in inputs:
# Run in a retrieval qa chain
docs = inputs["input_documents"]
else:
# For test
docs = self.retriever.get_relevant_documents(inputs[self.input_key])
inputs[self.memory_key] = ""
inputs = {k: v for k, v in inputs.items() if k in [self.chain.input_key, self.input_key, self.memory_key]}
prompt_length = self.chain.prompt_length(docs, **inputs)
remain = self.max_tokens - prompt_length
while self.get_conversation_length() > remain:
if len(self.buffered_history.messages) <= 2:
raise RuntimeError("Exceed max_tokens, trunk size of retrieved documents is too large")
temp = self.buffered_history.messages.pop(0)
self.summarized_history_temp.messages.append(temp)
temp = self.buffered_history.messages.pop(0)
self.summarized_history_temp.messages.append(temp)
return {self.memory_key: self.format_dialogue()}
def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None:
"""Save context from this conversation to buffer."""
input_str, output_str = self._get_input_output(inputs, outputs)
self.buffered_history.add_user_message(input_str.strip())
self.buffered_history.add_ai_message(output_str.strip())