mirror of https://github.com/hpcaitech/ColossalAI
120 lines
4.1 KiB
Python
120 lines
4.1 KiB
Python
'''
|
|
Class for loading table type data. please refer to Pandas-Input/Output for file format details.
|
|
'''
|
|
|
|
|
|
import os
|
|
import glob
|
|
import pandas as pd
|
|
from sqlalchemy import create_engine
|
|
from colossalqa.utils import drop_table
|
|
from colossalqa.mylogging import get_logger
|
|
|
|
logger = get_logger()
|
|
|
|
SUPPORTED_DATA_FORMAT = ['.csv','.xlsx', '.xls','.json','.html','.h5', '.hdf5','.parquet','.feather','.dta']
|
|
|
|
class TableLoader:
|
|
'''
|
|
Load tables from different files and serve a sql database for database operations
|
|
'''
|
|
def __init__(self, files: str,
|
|
sql_path:str='sqlite:///mydatabase.db',
|
|
verbose=False, **kwargs) -> None:
|
|
'''
|
|
Args:
|
|
files: list of files (list[file path, name])
|
|
sql_path: how to serve the sql database
|
|
**kwargs: keyword type arguments, useful for certain document types
|
|
'''
|
|
self.data = {}
|
|
self.verbose = verbose
|
|
self.sql_path = sql_path
|
|
self.kwargs = kwargs
|
|
self.sql_engine = create_engine(self.sql_path)
|
|
drop_table(self.sql_engine)
|
|
|
|
self.sql_engine = create_engine(self.sql_path)
|
|
for item in files:
|
|
path = item[0]
|
|
dataset_name = item[1]
|
|
if not os.path.exists(path):
|
|
raise FileNotFoundError(f"{path} doesn't exists")
|
|
if not any([path.endswith(i) for i in SUPPORTED_DATA_FORMAT]):
|
|
raise TypeError(f"{path} not supported. Supported type {SUPPORTED_DATA_FORMAT}")
|
|
|
|
logger.info("loading data", verbose=self.verbose)
|
|
self.load_data(path)
|
|
logger.info("data loaded", verbose=self.verbose)
|
|
self.to_sql(path, dataset_name)
|
|
|
|
def load_data(self, path):
|
|
'''
|
|
Load data and serve the data as sql database.
|
|
Data must be in pandas format
|
|
'''
|
|
files = []
|
|
# Handle glob expression
|
|
try:
|
|
files = glob.glob(path)
|
|
except Exception as e:
|
|
logger.error(e)
|
|
if len(files)==0:
|
|
raise ValueError("Unsupported file/directory format. For directories, please use glob expression")
|
|
elif len(files)==1:
|
|
path = files[0]
|
|
else:
|
|
for file in files:
|
|
self.load_data(file)
|
|
|
|
if path.endswith('.csv'):
|
|
# Load csv
|
|
self.data[path] = pd.read_csv(path)
|
|
elif path.endswith('.xlsx') or path.endswith('.xls'):
|
|
# Load excel
|
|
self.data[path] = pd.read_excel(path) # You can adjust the sheet_name as needed
|
|
elif path.endswith('.json'):
|
|
# Load json
|
|
self.data[path] = pd.read_json(path)
|
|
elif path.endswith('.html'):
|
|
# Load html
|
|
html_tables = pd.read_html(path)
|
|
# Choose the desired table from the list of DataFrame objects
|
|
self.data[path] = html_tables[0] # You may need to adjust this index
|
|
elif path.endswith('.h5') or path.endswith('.hdf5'):
|
|
# Load h5
|
|
self.data[path] = pd.read_hdf(path, key=self.kwargs.get('key', 'data')) # You can adjust the key as needed
|
|
elif path.endswith('.parquet'):
|
|
# Load parquet
|
|
self.data[path] = pd.read_parquet(path, engine='fastparquet')
|
|
elif path.endswith('.feather'):
|
|
# Load feather
|
|
self.data[path] = pd.read_feather(path)
|
|
elif path.endswith('.dta'):
|
|
# Load dta
|
|
self.data[path] = pd.read_stata(path)
|
|
else:
|
|
raise ValueError("Unsupported file format")
|
|
|
|
def to_sql(self, path, table_name):
|
|
'''
|
|
Serve the data as sql database.
|
|
'''
|
|
self.data[path].to_sql(table_name, con=self.sql_engine, if_exists='replace', index=False)
|
|
logger.info(f"Loaded to Sqlite3\nPath: {path}", verbose=self.verbose)
|
|
return self.sql_path
|
|
|
|
def get_sql_path(self):
|
|
return self.sql_path
|
|
|
|
def __del__(self):
|
|
if self.sql_engine:
|
|
drop_table(self.sql_engine)
|
|
self.sql_engine.dispose()
|
|
del self.data
|
|
del self.sql_engine
|
|
|
|
|
|
|
|
|