Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

134 lines
7.2 KiB

import copy
import csv
import os
from typing import Dict, List
from colossalai.logging import DistributedLogger
from .base import BaseDataset
ceval_subject_mapping = {
"computer_network": ["Computer Network", "计算机网络", "STEM"],
"operating_system": ["Operating System", "操作系统", "STEM"],
"computer_architecture": ["Computer Architecture", "计算机组成", "STEM"],
"college_programming": ["College Programming", "大学编程", "STEM"],
"college_physics": ["College Physics", "大学物理", "STEM"],
"college_chemistry": ["College Chemistry", "大学化学", "STEM"],
"advanced_mathematics": ["Advanced Mathematics", "高等数学", "STEM"],
"probability_and_statistics": ["Probability and Statistics", "概率统计", "STEM"],
"discrete_mathematics": ["Discrete Mathematics", "离散数学", "STEM"],
"electrical_engineer": ["Electrical Engineer", "注册电气工程师", "STEM"],
"metrology_engineer": ["Metrology Engineer", "注册计量师", "STEM"],
"high_school_mathematics": ["High School Mathematics", "高中数学", "STEM"],
"high_school_physics": ["High School Physics", "高中物理", "STEM"],
"high_school_chemistry": ["High School Chemistry", "高中化学", "STEM"],
"high_school_biology": ["High School Biology", "高中生物", "STEM"],
"middle_school_mathematics": ["Middle School Mathematics", "初中数学", "STEM"],
"middle_school_biology": ["Middle School Biology", "初中生物", "STEM"],
"middle_school_physics": ["Middle School Physics", "初中物理", "STEM"],
"middle_school_chemistry": ["Middle School Chemistry", "初中化学", "STEM"],
"veterinary_medicine": ["Veterinary Medicine", "兽医学", "STEM"],
"college_economics": ["College Economics", "大学经济学", "Social Science"],
"business_administration": ["Business Administration", "工商管理", "Social Science"],
"marxism": ["Marxism", "马克思主义基本原理", "Social Science"],
"mao_zedong_thought": ["Mao Zedong Thought", "毛泽东思想和中国特色社会主义理论体系概论", "Social Science"],
"education_science": ["Education Science", "教育学", "Social Science"],
"teacher_qualification": ["Teacher Qualification", "教师资格", "Social Science"],
"high_school_politics": ["High School Politics", "高中政治", "Social Science"],
"high_school_geography": ["High School Geography", "高中地理", "Social Science"],
"middle_school_politics": ["Middle School Politics", "初中政治", "Social Science"],
"middle_school_geography": ["Middle School Geography", "初中地理", "Social Science"],
"modern_chinese_history": ["Modern Chinese History", "近代史纲要", "Humanities"],
"ideological_and_moral_cultivation": ["Ideological and Moral Cultivation", "思想道德修养与法律基础", "Humanities"],
"logic": ["Logic", "逻辑学", "Humanities"],
"law": ["Law", "法学", "Humanities"],
"chinese_language_and_literature": ["Chinese Language and Literature", "中国语言文学", "Humanities"],
"art_studies": ["Art Studies", "艺术学", "Humanities"],
"professional_tour_guide": ["Professional Tour Guide", "导游资格", "Humanities"],
"legal_professional": ["Legal Professional", "法律职业资格", "Humanities"],
"high_school_chinese": ["High School Chinese", "高中语文", "Humanities"],
"high_school_history": ["High School History", "高中历史", "Humanities"],
"middle_school_history": ["Middle School History", "初中历史", "Humanities"],
"civil_servant": ["Civil Servant", "公务员", "Other"],
"sports_science": ["Sports Science", "体育学", "Other"],
"plant_protection": ["Plant Protection", "植物保护", "Other"],
"basic_medicine": ["Basic Medicine", "基础医学", "Other"],
"clinical_medicine": ["Clinical Medicine", "临床医学", "Other"],
"urban_and_rural_planner": ["Urban and Rural Planner", "注册城乡规划师", "Other"],
"accountant": ["Accountant", "注册会计师", "Other"],
"fire_engineer": ["Fire Engineer", "注册消防工程师", "Other"],
"environmental_impact_assessment_engineer": ["Environmental Impact Assessment Engineer", "环境影响评价工程师", "Other"],
"tax_accountant": ["Tax Accountant", "税务师", "Other"],
"physician": ["Physician", "医师资格", "Other"],
}
default_inference_kwargs = {
"calculate_loss": False,
"all_classes": ["A", "B", "C", "D"],
"language": "Chinese",
"pretrain": False,
"max_new_tokens": 32,
}
def get_few_shot_data(data: List[Dict], subject):
few_shot_data = [f"以下是中国关于{subject}考试的单项选择题,请选出其中的正确答案。"]
for i in data:
few_shot_data.append(i["input"] + i["target"])
return few_shot_data
class CEvalDataset(BaseDataset):
"""
Dataset class for CEval dataset.
Data source: https://huggingface.co/datasets/ceval/ceval-exam
This dataset class will convert the original dataset into the inference dataset.
"""
@staticmethod
def load(
path: str, logger: DistributedLogger, few_shot: bool, forward_only: bool, load_train: bool, load_reference: bool
) -> List[Dict]:
dataset = {"dev": {}, "test": {}}
for split in ["dev", "test"]:
files = os.listdir(os.path.join(path, split))
files.sort()
for file in files:
subject = file[0 : -len(f"_{split}.csv")]
subject = ceval_subject_mapping[subject][1]
file_dir = os.path.join(path, split, file)
dataset[split][subject] = {"data": []}
# It's been tested that each data sample in one subcategory have same inference arguments.
dataset[split][subject]["inference_kwargs"] = copy.deepcopy(default_inference_kwargs)
if split == "test" and few_shot:
dataset[split][subject]["inference_kwargs"]["few_shot_data"] = get_few_shot_data(
dataset["dev"][subject]["data"], subject
)
with open(file_dir, encoding="utf-8") as f:
reader = csv.reader(f)
_ = next(reader)
for row in reader:
# Dev split have answer and explanation so len(row) is 8
# But test split doesn't contain answer and explanation, so len(row) is 6
assert len(row) >= 6
choices = f"A. {row[2]}\nB. {row[3]}\nC. {row[4]}\nD. {row[5]}"
data_sample = {
"dataset": "ceval",
"split": split,
"category": subject,
"instruction": f"以下是中国关于{subject}考试的单项选择题,请选出其中的正确答案。",
"input": f"题目:{row[1]}\n{choices}\n答案:",
"output": "",
"target": row[6] if split == "dev" else "",
"id": int(row[0]),
}
dataset[split][subject]["data"].append(data_sample)
return dataset