Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

258 lines
10 KiB

# Adapted from https://github.com/ruixiangcui/AGIEval/blob/main/src/dataset_loader.py.
import ast
import glob
import os
from copy import deepcopy
from typing import Dict, List
import pandas as pd
from colossal_eval.utils import get_json_list
from colossalai.logging import DistributedLogger
from .base import BaseDataset
# define the datasets
english_qa_datasets = [
"lsat-ar",
"lsat-lr",
"lsat-rc",
"logiqa-en",
"sat-math",
"sat-en",
"aqua-rat",
"sat-en-without-passage",
"gaokao-english",
]
chinese_qa_datasets = [
"logiqa-zh",
"jec-qa-kd",
"jec-qa-ca",
"gaokao-chinese",
"gaokao-geography",
"gaokao-history",
"gaokao-biology",
"gaokao-chemistry",
"gaokao-physics",
"gaokao-mathqa",
]
english_cloze_datasets = ["math"]
chinese_cloze_datasets = ["gaokao-mathcloze"]
multi_choice_datasets = ["jec-qa-kd", "jec-qa-ca", "gaokao-physics", "gaokao-mathqa"]
math_output_datasets = {"gaokao-mathcloze", "math"}
default_inference_kwargs = {
"calculate_loss": True,
"all_classes": None,
"language": "Chinese",
"pretrain": False,
"max_new_tokens": 32,
}
def get_prompt(line: Dict, dataset_name: str, logger: DistributedLogger) -> Dict:
"""Modified from https://github.com/microsoft/AGIEval/blob/main/src/dataset_loader.py#L190"""
try:
all_classes = None
passage = line["passage"] if line["passage"] is not None else ""
if dataset_name in english_qa_datasets:
option_string = "ABCDEFG"
count = len(line["options"])
input = (
"Question: "
+ line["question"]
+ " "
+ "Choose from the following options: "
+ " ".join(line["options"])
+ "\n"
+ "Answer: "
)
all_classes = list(option_string[0:count])
elif dataset_name in chinese_qa_datasets:
option_string = "ABCDEFG"
count = len(line["options"])
input = "问题:" + line["question"] + " " + "从以下选项中选择:" + " ".join(line["options"]) + "\n" + "答案:"
all_classes = list(option_string[0:count])
elif dataset_name in english_cloze_datasets:
input = "Question: " + line["question"] + "\n" + "Answer: "
elif dataset_name in chinese_cloze_datasets:
input = "问题:" + line["question"] + "\n" + "答案:"
return {
"instruction": input if not passage else passage + "\n\n" + input,
"target": line["label"] if line["label"] else line["answer"],
}, all_classes
except NameError:
logger.info("Dataset not defined.")
# process few-shot raw_prompts
def combine_prompt(prompt_path, dataset_name, load_explanation=True, chat_mode=False):
demostrations = []
demostration_en = "Here are the answers for the problems in the exam."
demostration_zh = "以下是考试中各个问题的答案。"
if dataset_name in english_qa_datasets or dataset_name in english_cloze_datasets:
demostrations.append(demostration_en)
elif dataset_name in chinese_qa_datasets or dataset_name in chinese_cloze_datasets:
demostrations.append(demostration_zh)
skip_passage = False
if dataset_name == "sat-en-without-passage":
skip_passage = True
dataset_name = "sat-en"
# read the prompts by context and explanation
context_row = [0, 1, 3, 5, 7, 9]
explanation_row = [0, 2, 4, 6, 8, 10]
raw_prompts_context = pd.read_csv(
prompt_path, header=0, skiprows=lambda x: x not in context_row, keep_default_na=False
)
raw_prompts_explanation = pd.read_csv(
prompt_path, header=0, skiprows=lambda x: x not in explanation_row, keep_default_na=False
).replace(r"\n\n", "\n", regex=True)
contexts = []
for line in list(raw_prompts_context[dataset_name]):
if line:
# print(line)
contexts.append(ast.literal_eval(line))
explanations = [exp for exp in raw_prompts_explanation[dataset_name] if exp]
for idx, (con, exp) in enumerate(zip(contexts, explanations)):
passage = con["passage"] if con["passage"] is not None and not skip_passage else ""
question = con["question"]
options = con["options"] if con["options"] is not None else ""
label = con["label"] if con["label"] is not None else ""
answer = con["answer"] if "answer" in con and con["answer"] is not None else ""
if dataset_name in english_qa_datasets:
question_input = (
"Question: "
+ passage
+ " "
+ question
+ "\n"
+ "Choose from the following options: "
+ " ".join(options)
+ "\n"
+ "Answer: {}".format(label)
)
elif dataset_name in chinese_qa_datasets:
question_input = (
"问题:" + passage + " " + question + "\n" + "从以下选项中选择:" + " ".join(options) + "\n" + "答案:{}".format(label)
)
elif dataset_name in english_cloze_datasets:
question_input = "Question: ".format(idx + 1) + question + "\n" + "Answer: {}".format(answer)
elif dataset_name in chinese_cloze_datasets:
question_input = "问题:" + question + "\n" + "答案:{}".format(answer)
else:
raise ValueError(f"During loading few-sot examples, found unknown dataset: {dataset_name}")
if chat_mode:
demostrations.append((question_input,))
else:
demostrations.append(question_input)
return demostrations
class AGIEvalDataset(BaseDataset):
"""
Dataset wrapper for AGIEval dataset.
Data source: https://github.com/microsoft/AGIEval
This dataset class will convert the original dataset into the inference dataset.
A few dirty data needed to be manually corrected in the origin dataset:
Issue link: https://github.com/microsoft/AGIEval/issues/16
1. Invalid options in line 190 in gaokao-chemistry.jsonl.
2. Option D (They may increase in value as those same resources become rare on Earth.) missing in line 17 in sat-en-without-passage.jsonl.
3. Option D (They may increase in value as those same resources become rare on Earth.) missing in line 17 in sat-en.jsonl.
4. Option D (No, because the data do not indicate whether the honeybees had been infected with mites.) missing in line 57 in sat-en-without-passage.jsonl.
5. Option D (No, because the data do not indicate whether the honeybees had been infected with mites.) missing in line 57 in sat-en.jsonl.
6. Option D (Published theories of scientists who developed earlier models of the Venus flytrap) missing in line 98 in sat-en-without-passage.jsonl.
7. Option D (Published theories of scientists who developed earlier models of the Venus flytrap) missing in line 98 in sat-en.jsonl.
8. Label is empty in line 212 in jec-qa-kd.jsonl. Content is also dirty.
9. Actually, gaokao-mathqa.jsonl is also a multi-choice dataset. See line 149 286 287.
"""
@staticmethod
def load(
path: str, logger: DistributedLogger, few_shot: bool, forward_only: bool, load_train: bool, load_reference: bool
) -> List[Dict]:
dataset = {"test": {}}
files = glob.glob(os.path.join(path, "*.jsonl"))
files.sort()
if few_shot:
prompt_path = os.path.join(path, "few_shot_prompts.csv")
for file in files:
dataset_name = os.path.basename(file)[0 : -len(".jsonl")]
few_shot_data = None
if few_shot:
# process demo once if it is few-shot-CoT
few_shot_data = combine_prompt(prompt_path, dataset_name, load_explanation=False, chat_mode=False)
dataset["test"][dataset_name] = {"data": []}
file_dir = os.path.join(path, file)
loaded_jsonl = get_json_list(file_dir)
# It's been tested that each data sample in one subcategory have same inference arguments.
_, all_classes = get_prompt(loaded_jsonl[0], dataset_name, logger)
inference_kwargs = deepcopy(default_inference_kwargs)
if all_classes is not None and dataset_name not in multi_choice_datasets:
inference_kwargs["all_classes"] = all_classes
if dataset_name in english_qa_datasets:
inference_kwargs["language"] = "English"
if dataset_name in chinese_qa_datasets:
inference_kwargs["language"] = "Chinese"
inference_kwargs["few_shot_data"] = few_shot_data
dataset["test"][dataset_name]["inference_kwargs"] = inference_kwargs
for line in loaded_jsonl:
info, all_classes = get_prompt(line, dataset_name, logger)
# Convert multi-choice answers to a single string.
# We will convert it back when evaluating.
# We do this because if target is a list, it should be only used for multiple target answers.
if dataset_name in multi_choice_datasets:
if isinstance(info["target"], str) and len(info["target"]) > 1:
# "gaokao-mathqa" actually contain multi-choice questions.
# This if clause is specially used for it.
info["target"] = "".join(info["target"].split())
else:
info["target"] = "".join(info["target"])
if isinstance(info["target"], list) and len(info["target"]) == 1:
info["target"] = info["target"][0]
data_sample = {
"dataset": "agieval",
"split": "test",
"category": dataset_name,
"instruction": info["instruction"],
"input": "",
"output": "",
"target": info["target"],
}
dataset["test"][dataset_name]["data"].append(data_sample)
return dataset