ColossalAI/applications/ColossalChat/examples/training_scripts/train_dpo.sh

63 lines
2.0 KiB
Bash
Executable File

#!/bin/bash
set_n_least_used_CUDA_VISIBLE_DEVICES() {
local n=${1:-"9999"}
echo "GPU Memory Usage:"
local FIRST_N_GPU_IDS=$(nvidia-smi --query-gpu=memory.used --format=csv |
tail -n +2 |
nl -v 0 |
tee /dev/tty |
sort -g -k 2 |
awk '{print $1}' |
head -n $n)
export CUDA_VISIBLE_DEVICES=$(echo $FIRST_N_GPU_IDS | sed 's/ /,/g')
echo "Now CUDA_VISIBLE_DEVICES is set to:"
echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES"
}
set_n_least_used_CUDA_VISIBLE_DEVICES 8
# export CUDA_VISIBLE_DEVICES=6
PROJECT_NAME="dpo"
PARENT_SAVE_DIR="" # Path to a folder to save checkpoints
PARENT_TENSORBOARD_DIR="" # Path to a folder to save logs
PARENT_CONFIG_FILE="" # Path to a folder to save training config logs
PRETRAINED_MODEL_PATH="" # huggingface or local model path
PRETRAINED_TOKENIZER_PATH="" # huggingface or local tokenizer path
declare -a dataset=(
YOUR/DATA/DIR/arrow/part-00000
YOUR/DATA/DIR/arrow/part-00001
YOUR/DATA/DIR/arrow/part-00002
YOUR/DATA/DIR/arrow/part-00003
YOUR/DATA/DIR/arrow/part-00004
YOUR/DATA/DIR/arrow/part-00005
YOUR/DATA/DIR/arrow/part-00006
YOUR/DATA/DIR/arrow/part-00007
YOUR/DATA/DIR/arrow/part-00008
YOUR/DATA/DIR/arrow/part-00009
)
TIMESTAMP=$(date +%Y-%m-%d-%H-%M-%S)
FULL_PROJECT_NAME="${PROJECT_NAME}-${TIMESTAMP}"
SAVE_DIR="${PARENT_SAVE_DIR}${FULL_PROJECT_NAME}"
CONFIG_FILE="${PARENT_CONFIG_FILE}-${FULL_PROJECT_NAME}.json"
colossalai run --nproc_per_node 8 --hostfile hostfile --master_port 31312 train_dpo.py \
--pretrain $PRETRAINED_MODEL_PATH \
--checkpoint_path $PRETRAINED_MODEL_PATH \
--tokenizer_dir $PRETRAINED_TOKENIZER_PATH \
--dataset ${dataset[@]} \
--plugin "zero2" \
--save_interval 1000 \
--save_dir $SAVE_DIR \
--config_file $CONFIG_FILE \
--max_epochs 1 \
--accumulation_steps 4 \
--batch_size 2 \
--lr 1e-6 \
--mixed_precision "bf16" \
--grad_clip 1.0 \
--weight_decay 0.01 \
--warmup_steps 100 \
--grad_checkpoint \
--use_wandb