ColossalAI/colossalai/utils/activation_checkpoint.py

118 lines
4.3 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import torch
from torch.utils.checkpoint import check_backward_validity, detach_variable
from colossalai.context.random import get_states, get_current_mode, set_seed_states, set_mode, sync_states
class CheckpointFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, run_function, *args):
check_backward_validity(args)
ctx.run_function = run_function
# preserve rng states
ctx.fwd_cpu_rng_state = torch.get_rng_state()
sync_states()
ctx.fwd_seed_states = get_states(copy=True)
ctx.fwd_current_mode = get_current_mode()
if hasattr(torch, 'is_autocast_enabled'):
ctx.had_autocast_in_fwd = torch.is_autocast_enabled()
else:
ctx.had_autocast_in_fwd = False
# Save non-tensor inputs in ctx, keep a placeholder None for tensors
# to be filled out during the backward.
ctx.inputs = []
ctx.tensor_indices = []
tensor_inputs = []
for i, arg in enumerate(args):
if torch.is_tensor(arg):
tensor_inputs.append(arg)
ctx.tensor_indices.append(i)
ctx.inputs.append(None)
else:
ctx.inputs.append(arg)
ctx.save_for_backward(*tensor_inputs)
with torch.no_grad():
outputs = run_function(*args)
return outputs
@staticmethod
def backward(ctx, *args):
if not torch.autograd._is_checkpoint_valid():
raise RuntimeError(
"Checkpointing is not compatible with .grad() or when an `inputs` parameter"
" is passed to .backward(). Please use .backward() and do not pass its `inputs`"
" argument.")
# Copy the list to avoid modifying original list.
inputs = list(ctx.inputs)
tensor_indices = ctx.tensor_indices
tensors = ctx.saved_tensors
# store the current states
bwd_cpu_rng_state = torch.get_rng_state()
sync_states()
bwd_seed_states = get_states(copy=True)
bwd_current_mode = get_current_mode()
# set the states to what it used to be
torch.set_rng_state(ctx.fwd_cpu_rng_state)
for parallel_mode, state in ctx.fwd_seed_states.items():
set_seed_states(parallel_mode, state)
set_mode(ctx.fwd_current_mode)
# Fill in inputs with appropriate saved tensors.
for i, idx in enumerate(tensor_indices):
inputs[idx] = tensors[i]
detached_inputs = detach_variable(tuple(inputs))
if ctx.had_autocast_in_fwd:
with torch.enable_grad(), torch.cuda.amp.autocast():
outputs = ctx.run_function(*detached_inputs)
else:
with torch.enable_grad():
outputs = ctx.run_function(*detached_inputs)
if isinstance(outputs, torch.Tensor):
outputs = (outputs,)
# recover the rng states
torch.set_rng_state(bwd_cpu_rng_state)
for parallel_mode, state in bwd_seed_states.items():
set_seed_states(parallel_mode, state)
set_mode(bwd_current_mode)
# run backward() with only tensor that requires grad
outputs_with_grad = []
args_with_grad = []
for i in range(len(outputs)):
if torch.is_tensor(outputs[i]) and outputs[i].requires_grad:
outputs_with_grad.append(outputs[i])
args_with_grad.append(args[i])
if len(outputs_with_grad) == 0:
raise RuntimeError(
"none of output has requires_grad=True,"
" this checkpoint() is not necessary")
torch.autograd.backward(outputs_with_grad, args_with_grad)
grads = tuple(inp.grad if isinstance(inp, torch.Tensor) else None
for inp in detached_inputs)
return (None,) + grads
def checkpoint(function, *args):
"""Checkpoint the computation while preserve the rng states, modified from Pytorch torch.utils.checkpoint
:param function: Describe the forward pass function. It should know how to handle the input tuples.
:param args: Tuple containing the parameters of the function
:return: Output of running function with provided args
"""
return CheckpointFunction.apply(function, *args)