mirror of https://github.com/hpcaitech/ColossalAI
311 lines
12 KiB
Python
311 lines
12 KiB
Python
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
import os
|
|
import os.path as osp
|
|
|
|
import torch
|
|
from typing import List
|
|
from decimal import Decimal
|
|
from colossalai.context import ParallelMode
|
|
from colossalai.core import global_context as gpc
|
|
from colossalai.registry import HOOKS
|
|
from colossalai.logging import DistributedLogger
|
|
from colossalai.utils import report_memory_usage, is_dp_rank_0, \
|
|
is_tp_rank_0, is_no_pp_or_last_stage, MultiTimer
|
|
from ._base_hook import BaseHook
|
|
|
|
|
|
def _format_number(val, prec=5):
|
|
if isinstance(val, float):
|
|
return f'{val:.{prec}g}'
|
|
elif torch.is_tensor(val) and torch.is_floating_point(val):
|
|
return f'{val.item():.{prec}g}'
|
|
return val
|
|
|
|
|
|
class LogByEpochHook(BaseHook):
|
|
"""Hook to log by epoch
|
|
|
|
:param logger: Logger for the log
|
|
:param interval: Recording interval, defaults to 1
|
|
:type interval: int, optional
|
|
:param priority: Priority in the printing, hooks with small priority will be printed in front, defaults to 1
|
|
:type priority: int, optional
|
|
"""
|
|
|
|
def __init__(self,
|
|
logger,
|
|
interval: int = 1,
|
|
priority: int = 1):
|
|
super().__init__(priority)
|
|
self.logger = logger
|
|
self._interval = interval
|
|
|
|
def _is_epoch_to_log(self, trainer):
|
|
return trainer.cur_epoch % self._interval == 0
|
|
|
|
|
|
@HOOKS.register_module
|
|
class LogMetricByStepHook(BaseHook):
|
|
"""Hook to log metric by step
|
|
|
|
:param priority: Priority in the printing, hooks with small priority will be printed in front, defaults to 10
|
|
:type priority: int, optional
|
|
"""
|
|
|
|
def __init__(self, priority: int = 10):
|
|
super().__init__(priority)
|
|
|
|
def after_train_iter(self, trainer, *args):
|
|
trainer.states['step_metrics'] = dict()
|
|
for metric_name, metric_calculator in trainer.states['metrics']['train'].items():
|
|
trainer.states['step_metrics'][metric_name.lower()] = \
|
|
f'{_format_number(metric_calculator.get_last_step_value())}'
|
|
|
|
def after_test_iter(self, trainer, *args):
|
|
trainer.states['step_metrics'] = dict()
|
|
for metric_name, metric_calculator in trainer.states['metrics']['test'].items():
|
|
trainer.states['step_metrics'][metric_name.lower()] = \
|
|
f'{_format_number(metric_calculator.get_last_step_value())}'
|
|
|
|
|
|
@HOOKS.register_module
|
|
class LogMetricByEpochHook(LogByEpochHook):
|
|
"""Specialized hook to record the metric to log.
|
|
|
|
:param logger: Logger for the log
|
|
:param interval: Recording interval, defaults to 1
|
|
:type interval: int, optional
|
|
:param priority: Priority in the printing, hooks with small priority will be printed in front, defaults to 10
|
|
:type priority: int, optional
|
|
"""
|
|
|
|
def __init__(self,
|
|
logger,
|
|
interval: int = 1,
|
|
priority: int = 10) -> None:
|
|
super().__init__(logger, interval, priority)
|
|
self._is_rank_to_log = is_dp_rank_0() and is_tp_rank_0() and is_no_pp_or_last_stage()
|
|
|
|
def _get_str(self, trainer, mode):
|
|
msg = []
|
|
for metric_name, metric_calculator in trainer.states['metrics'][mode].items():
|
|
msg.append(
|
|
f'{metric_name} = {_format_number(metric_calculator.get_accumulated_value())}')
|
|
msg = ' | '.join(msg)
|
|
return msg
|
|
|
|
def after_train_epoch(self, trainer):
|
|
if self._is_epoch_to_log(trainer):
|
|
msg = self._get_str(trainer=trainer, mode='train')
|
|
|
|
if self._is_rank_to_log:
|
|
self.logger.info(f'[Epoch {trainer.cur_epoch} / Train]: {msg}')
|
|
# f'Training - Epoch {trainer.cur_epoch} - {self.__class__.__name__}: {msg}')
|
|
|
|
def after_test_epoch(self, trainer):
|
|
if self._is_epoch_to_log(trainer):
|
|
msg = self._get_str(trainer=trainer, mode='test')
|
|
if self._is_rank_to_log:
|
|
self.logger.info(f'[Epoch {trainer.cur_epoch} / Test]: {msg}')
|
|
# f'Testing - Epoch {trainer.cur_epoch} - {self.__class__.__name__}: {msg}')
|
|
|
|
|
|
@HOOKS.register_module
|
|
class TensorboardHook(BaseHook):
|
|
"""Specialized hook to record the metric to Tensorboard.
|
|
|
|
:param log_dir: Directory of log
|
|
:type log_dir: str
|
|
:param ranks: Ranks of processors
|
|
:type ranks: typing.List
|
|
:param parallel_mode: Parallel mode, defaults to colossalai.context.parallel_mode.ParallelMode.GLOBAL
|
|
:type parallel_mode: :class:`colossalai.context.parallel_mode.ParallelMode`, optional
|
|
:param priority: Priority in the printing, hooks with small priority will be printed in front, defaults to 10
|
|
:type priority: int, optional
|
|
"""
|
|
|
|
def __init__(self,
|
|
log_dir: str,
|
|
ranks: List = None,
|
|
parallel_mode: ParallelMode = ParallelMode.GLOBAL,
|
|
priority: int = 10,
|
|
) -> None:
|
|
super().__init__(priority=priority)
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
# create log dir
|
|
if not gpc.is_initialized(ParallelMode.GLOBAL) or gpc.get_global_rank() == 0:
|
|
os.makedirs(log_dir, exist_ok=True)
|
|
|
|
# determine the ranks to generate tensorboard logs
|
|
self._is_valid_rank_to_log = False
|
|
if not gpc.is_initialized(parallel_mode):
|
|
self._is_valid_rank_to_log = True
|
|
else:
|
|
local_rank = gpc.get_local_rank(parallel_mode)
|
|
|
|
if ranks is None or local_rank in ranks:
|
|
self._is_valid_rank_to_log = True
|
|
|
|
# check for
|
|
if gpc.is_initialized(ParallelMode.PIPELINE) and \
|
|
not gpc.is_last_rank(ParallelMode.PIPELINE) and self._is_valid_rank_to_log:
|
|
raise ValueError("Tensorboard hook can only log on the last rank of pipeline process group")
|
|
|
|
if self._is_valid_rank_to_log:
|
|
# create workspace on only one rank
|
|
if gpc.is_initialized(parallel_mode):
|
|
rank = gpc.get_local_rank(parallel_mode)
|
|
else:
|
|
rank = 0
|
|
|
|
# create workspace
|
|
log_dir = osp.join(log_dir, f'{parallel_mode}_rank_{rank}')
|
|
os.makedirs(log_dir, exist_ok=True)
|
|
|
|
self.writer = SummaryWriter(log_dir=log_dir, filename_suffix=f'_rank_{rank}')
|
|
|
|
def _log_by_iter(self, trainer, mode: str):
|
|
for metric_name, metric_calculator in trainer.states['metrics'][mode].items():
|
|
if metric_calculator.epoch_only:
|
|
continue
|
|
val = metric_calculator.get_last_step_value()
|
|
|
|
if self._is_valid_rank_to_log:
|
|
self.writer.add_scalar(f'{metric_name}/{mode}', val, trainer.cur_step)
|
|
|
|
def _log_by_epoch(self, trainer, mode: str):
|
|
for metric_name, metric_calculator in trainer.states['metrics'][mode].items():
|
|
if metric_calculator.epoch_only:
|
|
val = metric_calculator.get_accumulated_value()
|
|
if self._is_valid_rank_to_log:
|
|
self.writer.add_scalar(f'{metric_name}/{mode}', val, trainer.cur_step)
|
|
|
|
def after_test_iter(self, trainer, *args):
|
|
self._log_by_iter(trainer, mode='test')
|
|
|
|
def after_test_epoch(self, trainer):
|
|
self._log_by_epoch(trainer, mode='test')
|
|
|
|
def after_train_iter(self, trainer, *args):
|
|
self._log_by_iter(trainer, mode='train')
|
|
|
|
def after_train_epoch(self, trainer):
|
|
self._log_by_epoch(trainer, mode='train')
|
|
|
|
|
|
@HOOKS.register_module
|
|
class LogTimingByEpochHook(LogByEpochHook):
|
|
"""Specialized hook to write timing record to log.
|
|
|
|
:param timer: Timer for the hook
|
|
:type timer: :class:`colossalai.utils.MultiTimer`
|
|
:param logger: Logger for the log
|
|
:type logger: :class:`colossalai.logging.DistributedLogger`
|
|
:param interval: Recording interval, defaults to 1
|
|
:type interval: int, optional
|
|
:param priority: Priority in the printing, hooks with small priority will be printed in front, defaults to 10
|
|
:type priority: int, optional
|
|
:param log_eval: Whether writes in evaluation, defaults to True
|
|
:type log_eval: bool, optional
|
|
:param ignore_num_train_steps: Number of training steps to ignore, defaults to 0
|
|
:type ignore_num_train_steps: int, optional
|
|
"""
|
|
|
|
def __init__(self,
|
|
timer: MultiTimer,
|
|
logger: DistributedLogger,
|
|
interval: int = 1,
|
|
priority: int = 10,
|
|
log_eval: bool = True,
|
|
ignore_num_train_steps: int = 0) -> None:
|
|
super().__init__(logger=logger, interval=interval, priority=priority)
|
|
self._timer = timer
|
|
self._log_eval = log_eval
|
|
self._is_rank_to_log = is_dp_rank_0() and is_tp_rank_0() and is_no_pp_or_last_stage()
|
|
|
|
# extra handling to avoid the unstable readings of the first
|
|
# few training steps to affect the history mean time
|
|
self._ignore_num_train_steps = ignore_num_train_steps
|
|
self._is_train_step_history_trimmed = False
|
|
|
|
def _get_message(self, mode):
|
|
msg = []
|
|
for timer_name, timer in self._timer:
|
|
if timer_name.startswith(mode):
|
|
last_elapsed_time = timer.get_elapsed_time()
|
|
if timer.has_history:
|
|
if timer_name == 'Train-step' and not self._is_train_step_history_trimmed:
|
|
timer._history = timer._history[self._ignore_num_train_steps:]
|
|
self._is_train_step_history_trimmed = True
|
|
history_mean = timer.get_history_mean()
|
|
history_sum = timer.get_history_sum()
|
|
msg.append(
|
|
f'{timer_name}: last = {_format_number(last_elapsed_time)} s, mean = {_format_number(history_mean)} s'
|
|
)
|
|
else:
|
|
msg.append(f'{timer_name}: last = {_format_number(last_elapsed_time)} s')
|
|
|
|
msg = ' | '.join(msg)
|
|
return msg
|
|
|
|
def after_train_epoch(self, trainer):
|
|
"""Writes log after finishing a training epoch.
|
|
"""
|
|
if self._is_epoch_to_log(trainer) and self._is_rank_to_log:
|
|
msg = self._get_message('Train')
|
|
self.logger.info(f'[Epoch {trainer.cur_epoch} / Train]: {msg} | #steps/epoch = {trainer.steps_per_epoch}')
|
|
|
|
def after_test_epoch(self, trainer):
|
|
"""Writes log after finishing a testing epoch.
|
|
"""
|
|
if self._is_epoch_to_log(trainer) and self._is_rank_to_log and self._log_eval:
|
|
msg = self._get_message('Test')
|
|
self.logger.info(f'[Epoch {trainer.cur_epoch} / Test]: {msg}')
|
|
|
|
|
|
@HOOKS.register_module
|
|
class LogMemoryByEpochHook(LogByEpochHook):
|
|
"""Specialized Hook to write memory usage record to log.
|
|
|
|
:param logger: Logger for the log
|
|
:type logger: colossalai.logging.DistributedLogger
|
|
:param interval: Recording interval, defaults to 1
|
|
:type interval: int, optional
|
|
:param priority: Priority in the printing, hooks with small priority will be printed in front, defaults to 10
|
|
:type priority: int, optional
|
|
:param log_eval: Whether writes in evaluation, defaults to True
|
|
:type log_eval: bool, optional
|
|
"""
|
|
|
|
def __init__(self,
|
|
logger: DistributedLogger,
|
|
interval: int = 1,
|
|
priority: int = 10,
|
|
log_eval: bool = True,
|
|
report_cpu: bool = False, # no reference
|
|
) -> None:
|
|
super().__init__(logger=logger, interval=interval, priority=priority)
|
|
self._log_eval = log_eval
|
|
self._is_rank_to_log = is_dp_rank_0() and is_tp_rank_0()
|
|
|
|
def before_train(self, trainer):
|
|
"""Resets before training.
|
|
"""
|
|
if self._is_epoch_to_log(trainer) and self._is_rank_to_log:
|
|
report_memory_usage('Before-train', self.logger)
|
|
|
|
def after_train_epoch(self, trainer):
|
|
"""Writes log after finishing a training epoch.
|
|
"""
|
|
if self._is_epoch_to_log(trainer) and self._is_rank_to_log:
|
|
report_memory_usage(f'[Epoch {trainer.cur_epoch} / Train]', self.logger)
|
|
|
|
def after_test(self, trainer):
|
|
"""Reports after testing.
|
|
"""
|
|
if self._is_epoch_to_log(trainer) and self._is_rank_to_log and self._log_eval:
|
|
report_memory_usage(f'[Epoch {trainer.cur_epoch} / Test]', self.logger)
|