ColossalAI/evoformer/evoformer.py

53 lines
1.3 KiB
Python

import torch
import torch.nn as nn
from .msa import MSAStack
from .ops import OutProductMean
from .triangle import PairStack
class EvoformerBlock(nn.Module):
def __init__(self, d_node, d_pair):
super(EvoformerBlock, self).__init__()
self.msa_stack = MSAStack(d_node, d_pair, p_drop=0.15)
self.communication = OutProductMean(n_feat=d_node, n_feat_out=d_pair, n_feat_proj=32)
self.pair_stack = PairStack(d_pair=d_pair)
def forward(self, node, pair):
node = node + self.msa_stack(node, pair)
pair = pair + self.communication(node)
pair = pair + self.pair_stack(pair)
return node, pair
class Evoformer(nn.Module):
def __init__(self, d_node, d_pair):
super(Evoformer, self).__init__()
self.blocks = nn.ModuleList()
for _ in range(1):
self.blocks.append(EvoformerBlock(d_node, d_pair))
def forward(self, node, pair):
for b in self.blocks:
node, pair = b(node, pair)
return node, pair
def evoformer_tiny():
return Evoformer(d_node=64, d_pair=32)
def evoformer_base():
return Evoformer(d_node=256, d_pair=128)
def evoformer_large():
return Evoformer(d_node=512, d_pair=256)
__all__ = ['Evoformer', 'evoformer_base', 'evoformer_large']