mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
115 lines
4.6 KiB
115 lines
4.6 KiB
from functools import partial |
|
|
|
import colossalai |
|
from colossalai.utils.cuda import get_current_device |
|
import pytest |
|
import torch |
|
import torch.distributed as dist |
|
import torch.multiprocessing as mp |
|
from colossalai.amp import convert_to_apex_amp |
|
from colossalai.nn.optimizer import CPUAdam |
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use |
|
from colossalai.utils import free_port |
|
from colossalai.zero.init_ctx import ZeroInitContext |
|
from colossalai.zero.shard_utils import (BucketTensorShardStrategy, TensorShardStrategy) |
|
from colossalai.zero.sharded_model import ShardedModelV2 |
|
from colossalai.zero.sharded_model.utils import col_model_deepcopy |
|
from colossalai.zero.sharded_optim import ShardedOptimizerV2 |
|
from colossalai.zero.sharded_optim._utils import has_inf_or_nan |
|
from tests.components_to_test.registry import non_distributed_component_funcs |
|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
|
|
from common import CONFIG, check_sharded_model_params |
|
|
|
|
|
def _run_step(model, optimizer, data, label, criterion, enable_autocast=False): |
|
model.train() |
|
optimizer.zero_grad() |
|
with torch.cuda.amp.autocast(enabled=enable_autocast): |
|
if criterion: |
|
y = model(data) |
|
loss = criterion(y, label) |
|
else: |
|
loss = model(data, label) |
|
|
|
loss = loss.float() |
|
if isinstance(model, ShardedModelV2): |
|
optimizer.backward(loss) |
|
else: |
|
loss.backward() |
|
optimizer.step() |
|
|
|
|
|
@parameterize("cpu_offload", [True, False]) |
|
@parameterize("use_cpuadam", [True, False]) |
|
@parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy]) |
|
@parameterize("gpu_margin_mem_ratio", [0.0, 0.7]) |
|
def _run_test_sharded_optim_v2(cpu_offload, shard_strategy_class, use_cpuadam, gpu_margin_mem_ratio): |
|
test_models = ['repeated_computed_layers', 'resnet18', 'bert', 'no_leaf_module'] |
|
shard_strategy = shard_strategy_class() |
|
|
|
if use_cpuadam and cpu_offload is False: |
|
return |
|
if gpu_margin_mem_ratio > 0.0 and not (cpu_offload and use_cpuadam): |
|
return |
|
|
|
for model_name in test_models: |
|
get_components_func = non_distributed_component_funcs.get_callable(model_name) |
|
model_builder, train_dataloader, _, optimizer_class, criterion = get_components_func() |
|
|
|
with ZeroInitContext(target_device=torch.device(f'cpu:0') if cpu_offload else get_current_device(), |
|
shard_strategy=shard_strategy, |
|
shard_param=True): |
|
zero_model = model_builder(checkpoint=True) |
|
zero_model = ShardedModelV2( |
|
zero_model, |
|
shard_strategy, |
|
tensor_placement_policy='cpu' if cpu_offload else 'cuda', |
|
reuse_fp16_shard=use_cpuadam, |
|
) |
|
|
|
model = model_builder(checkpoint=True).half() |
|
col_model_deepcopy(zero_model, model) |
|
model = model.cuda().float() |
|
|
|
if use_cpuadam: |
|
optimizer_class = CPUAdam |
|
optim = optimizer_class(model.parameters(), lr=1e-3) |
|
sharded_optim = optimizer_class(zero_model.parameters(), lr=1e-3) |
|
sharded_optim = ShardedOptimizerV2(zero_model, |
|
sharded_optim, |
|
initial_scale=2**5, |
|
gpu_margin_mem_ratio=gpu_margin_mem_ratio) |
|
|
|
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False) |
|
apex_model, apex_optimizer = convert_to_apex_amp(model, optim, amp_config) |
|
if dist.get_world_size() > 1: |
|
apex_model = DDP(apex_model, device_ids=[torch.cuda.current_device()]) |
|
|
|
for i, (data, label) in enumerate(train_dataloader): |
|
if i > 5: |
|
break |
|
data, label = data.cuda(), label.cuda() |
|
_run_step(apex_model, apex_optimizer, data, label, criterion, False) |
|
_run_step(zero_model, sharded_optim, data, label, criterion, False) |
|
check_sharded_model_params(model, zero_model, loose=True, reuse_fp16_shard=use_cpuadam) |
|
for param in model.parameters(): |
|
assert not has_inf_or_nan(param) |
|
|
|
|
|
def _run_dist(rank, world_size, port): |
|
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') |
|
_run_test_sharded_optim_v2() |
|
|
|
|
|
# use_cpuadam = True can be used with cpu_offload = False |
|
@pytest.mark.dist |
|
@pytest.mark.parametrize("world_size", [1, 2]) |
|
@rerun_if_address_is_in_use() |
|
def test_sharded_optim_v2(world_size): |
|
run_func = partial(_run_dist, world_size=world_size, port=free_port()) |
|
mp.spawn(run_func, nprocs=world_size) |
|
|
|
|
|
if __name__ == '__main__': |
|
test_sharded_optim_v2(world_size=2)
|
|
|