Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

74 lines
2.6 KiB

import torch
import colossalai
import pytest
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.functional as F
from colossalai.utils.cuda import get_current_device
from colossalai.utils.memory import colo_device_memory_capacity, colo_set_process_memory_fraction
from colossalai.zero.init_ctx import ZeroInitContext
from colossalai.zero.sharded_model import ShardedModelV2
from colossalai.zero.shard_utils import BucketTensorShardStrategy
from colossalai.utils import free_port
from colossalai.testing import rerun_if_address_is_in_use
from functools import partial
class MyTestModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.proj1 = nn.Linear(512, 512)
self.weight = nn.Parameter(torch.randn(1024, 512))
self.proj2 = nn.Linear(1024, 512)
def forward(self, x):
x = self.proj1(x)
x = F.linear(x, self.weight)
x = self.proj2(x)
return x
def run_mem_collector_testing():
cuda_capacity = colo_device_memory_capacity(get_current_device())
fraction = (50 * 1024**2) / cuda_capacity
# limit max memory to 50MB
colo_set_process_memory_fraction(fraction)
shard_strategy = BucketTensorShardStrategy()
with ZeroInitContext(target_device=get_current_device(), shard_strategy=shard_strategy, shard_param=True):
model = MyTestModel()
model = ShardedModelV2(module=model,
shard_strategy=shard_strategy,
reduce_scatter_bucket_size_mb=1,
tensor_placement_policy='auto')
data = torch.randn(2, 512, device=get_current_device())
output = model(data)
loss = torch.mean(output)
model.backward(loss)
cuda_model_data_list = model._memstats_collector.model_data_list('cuda')
assert cuda_model_data_list == [1311744, 1836032, 1836032, 1311744, 1836032, 1836032]
cuda_non_model_data_list = model._memstats_collector.non_model_data_list('cuda')
assert cuda_non_model_data_list[0] > cuda_non_model_data_list[1]
assert cuda_non_model_data_list[-2] > cuda_non_model_data_list[-1]
def run_dist(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_mem_collector_testing()
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_mem_collector(world_size=2):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_mem_collector()