mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
54 lines
1.7 KiB
54 lines
1.7 KiB
import colossalai |
|
import colossalai.nn as col_nn |
|
import pytest |
|
import torch |
|
import torch.nn as nn |
|
from colossalai.fx._compatibility import is_compatible_with_meta |
|
from colossalai.fx.passes.adding_split_node_pass import (split_with_split_nodes_pass, uniform_split_pass) |
|
from colossalai.fx.passes.meta_info_prop import MetaInfoProp |
|
from colossalai.fx.passes.utils import get_comm_size |
|
from torch.fx import symbolic_trace |
|
|
|
is_compatible = is_compatible_with_meta() |
|
if is_compatible: |
|
from colossalai.fx.profiler import MetaTensor |
|
|
|
MODEL_DIM = 16 |
|
BATCH_SIZE = 8 |
|
PIPELINE_SIZE = 2 |
|
|
|
|
|
class MLP(torch.nn.Module): |
|
|
|
def __init__(self, dim: int): |
|
super().__init__() |
|
self.linear1 = torch.nn.Linear(dim, dim) |
|
self.linear2 = torch.nn.Linear(dim, dim) |
|
self.linear3 = torch.nn.Linear(dim, dim) |
|
self.linear4 = torch.nn.Linear(dim, dim) |
|
|
|
def forward(self, x): |
|
x = self.linear1(x) |
|
x = self.linear2(x) |
|
x = self.linear3(x) |
|
x = self.linear4(x) |
|
return x |
|
|
|
|
|
def test_comm_size_compute(): |
|
model = MLP(MODEL_DIM) |
|
input_sample = torch.rand(BATCH_SIZE, MODEL_DIM, device='meta') |
|
gm = symbolic_trace(model) |
|
if is_compatible: |
|
input_sample = MetaTensor(input_sample, fake_device=next(gm.parameters()).device) |
|
MetaInfoProp(gm).run(input_sample) |
|
annotated_model = uniform_split_pass(gm, PIPELINE_SIZE) |
|
split_model, split_submodules = split_with_split_nodes_pass(annotated_model) |
|
submodule_list = list(split_model.children()) |
|
comm_size = get_comm_size(submodule_list[0], submodule_list[1]) |
|
# the shape of tensor send from partition 0 to partition 1 is (8, 16) |
|
assert comm_size == 128 |
|
|
|
|
|
if __name__ == '__main__': |
|
test_comm_size_compute()
|
|
|