You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/examples/inference/benchmark_llama.py

168 lines
6.0 KiB

import argparse
import time
import torch
import torch.distributed as dist
import transformers
import colossalai
from colossalai.accelerator import get_accelerator
from colossalai.inference import InferenceEngine
from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn
GIGABYTE = 1024**3
MEGABYTE = 1024 * 1024
CONFIG_MAP = {
"toy": transformers.LlamaConfig(num_hidden_layers=4),
"llama-7b": transformers.LlamaConfig(
hidden_size=4096,
intermediate_size=11008,
num_attention_heads=32,
num_hidden_layers=32,
num_key_value_heads=32,
max_position_embeddings=2048,
),
"llama-13b": transformers.LlamaConfig(
hidden_size=5120,
intermediate_size=13824,
num_attention_heads=40,
num_hidden_layers=40,
num_key_value_heads=40,
max_position_embeddings=2048,
),
"llama2-7b": transformers.LlamaConfig(
hidden_size=4096,
intermediate_size=11008,
num_attention_heads=32,
num_hidden_layers=32,
num_key_value_heads=32,
max_position_embeddings=4096,
),
"llama2-13b": transformers.LlamaConfig(
hidden_size=5120,
intermediate_size=13824,
num_attention_heads=40,
num_hidden_layers=40,
num_key_value_heads=40,
max_position_embeddings=4096,
),
}
def data_gen(batch_size: int = 4, seq_len: int = 512):
input_ids = torch.randint(10, 30000, (batch_size, seq_len), device=get_accelerator().get_current_device())
attention_mask = torch.ones_like(input_ids)
data = dict(input_ids=input_ids, attention_mask=attention_mask)
return data
def print_details_info(outputs, model_config, args, whole_end2end):
msg: str = ""
if dist.get_rank() == 0:
msg += "-------Perf Summary-------\n"
if args.verbose:
timestamps = outputs[1]
prefill = []
encoder = []
end2end = []
for timestamp in timestamps:
prefill.append(timestamp[1] - timestamp[0])
encoder.append(
sum(timestamp[i + 1] - timestamp[i] for i in range(1, len(timestamp) - 1)) / (len(timestamp) - 2)
)
end2end.append(timestamp[-1] - timestamp[0])
mb_avg_end2end = sum(end2end) / len(end2end)
mb_avg_latency = mb_avg_end2end / (args.output_len * args.mb_size)
msg += f"Average prefill time: {sum(prefill) / len(prefill) * 1000:.2f} ms\n"
msg += f"Average encode time: {sum(encoder) / len(encoder) * 1000:.2f} ms\n"
msg += f"Average micro batch end2end time: {mb_avg_end2end * 1000:.2f} ms\n"
msg += f"Average micro batch per token latency: {mb_avg_latency * 1000:.2f} ms\n"
whole_avg_latency = whole_end2end / (args.output_len * args.batch_size)
num_layers = getattr(model_config, "num_layers", model_config.num_hidden_layers)
num_parameters = num_layers * model_config.hidden_size * model_config.hidden_size * 12 / args.pp_size
if args.dtype in ["fp16", "bf16"]:
num_bytes = 2
else:
num_bytes = 4
msg += f"Whole batch end2end time: {whole_end2end * 1000:.2f} ms\n"
msg += f"Whole batch per token latency: {whole_avg_latency * 1000:.2f} ms\n"
msg += f"Throughput: {args.output_len * args.batch_size / whole_end2end:.2f} tokens/s\n"
msg += f"Flops: {num_parameters * num_bytes / whole_avg_latency / 1e12:.2f} TFLOPS\n"
if torch.cuda.is_available():
msg += f"-------Memory Summary Device:{get_accelerator().current_device()}-------\n"
msg += f"Max memory allocated: {get_accelerator().max_memory_allocated() / GIGABYTE:.2f} GB\n"
msg += f"Max memory reserved: {get_accelerator().max_memory_reserved() / GIGABYTE:.2f} GB\n"
print(msg)
def benchmark_inference(args):
config = CONFIG_MAP[args.model]
model = transformers.LlamaForCausalLM(config)
if dist.get_rank() == 0:
print("Model loaded")
engine = InferenceEngine(
pp_size=args.pp_size,
tp_size=args.tp_size,
dtype=args.dtype,
micro_batch_size=args.mb_size,
model=model,
verbose=args.verbose,
max_batch_size=args.batch_size,
max_input_len=args.seq_len,
max_output_len=args.output_len,
)
data = data_gen(args.batch_size, args.seq_len)
N_WARMUP_STEPS = 2
for _ in range(N_WARMUP_STEPS):
engine.generate(data)
torch.cuda.synchronize()
whole_end2end = time.time()
outputs = engine.generate(data)
torch.cuda.synchronize()
whole_end2end = time.time() - whole_end2end
print_details_info(outputs, model.config, args, whole_end2end)
def hybrid_inference(rank, world_size, port, args):
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
benchmark_inference(args)
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def benchmark(args):
spawn(hybrid_inference, nprocs=args.tp_size * args.pp_size, args=args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-m",
"--model",
default="toy",
help="the size of model",
choices=["toy", "llama-7b", "llama-13b", "llama2-7b", "llama2-13b"],
)
parser.add_argument("-b", "--batch_size", type=int, default=8, help="batch size")
parser.add_argument("-s", "--seq_len", type=int, default=8, help="sequence length")
parser.add_argument("--mb_size", type=int, default=1, help="micro_batch_size")
parser.add_argument("--pp_size", type=int, default=1, help="pipeline size")
parser.add_argument("--tp_size", type=int, default=1, help="pipeline size")
parser.add_argument("--output_len", type=int, default=128, help="Output length")
parser.add_argument("--dtype", type=str, default="fp16", help="data type")
parser.add_argument("-v", "--verbose", default=False, action="store_true")
args = parser.parse_args()
benchmark(args)