mirror of https://github.com/hpcaitech/ColossalAI
129 lines
5.2 KiB
Python
129 lines
5.2 KiB
Python
from functools import partial
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.multiprocessing as mp
|
|
|
|
import colossalai
|
|
from colossalai.booster import Booster
|
|
from colossalai.booster.plugin import GeminiPlugin
|
|
from colossalai.nn.optimizer import HybridAdam
|
|
from colossalai.tensor.colo_parameter import ColoParameter
|
|
from colossalai.testing import rerun_if_address_is_in_use
|
|
from colossalai.utils import free_port
|
|
from tests.kit.model_zoo import model_zoo
|
|
|
|
|
|
def check_gemini_plugin(early_stop: bool = True):
|
|
"""check gemini plugin over model zoo
|
|
|
|
Args:
|
|
early_stop (bool, optional): Whether to stop when getting the first error. Defaults to True.
|
|
"""
|
|
passed_models = []
|
|
failed_info = {} # (model_name, error) pair
|
|
|
|
for name, (model_fn, data_gen_fn, output_transform_fn, _) in model_zoo.items():
|
|
# These models lead to CUDA error
|
|
if name in ('diffusers_auto_encoder_kl', 'diffusers_vq_model', 'diffusers_unet2d_model', 'timm_resmlp',
|
|
'timm_gmixer_12_224', 'timm_gmlp_b16_224', 'timm_mixer_b16_224', 'timm_convnext'):
|
|
continue
|
|
# These models are not compatible with gemini
|
|
if name in [
|
|
'diffusers_clip_vision_model', 'timm_resnet', 'timm_beit', 'timm_beitv2', 'timm_eca_nfnet',
|
|
'timm_efficientformer', 'timm_hrnet_w18_small', 'timm_nf_ecaresnet101', 'timm_nf_regnet_b0',
|
|
'timm_skresnet18', 'timm_wide_resnet50_2', 'timm_convit', 'timm_dm_nfnet', 'timm_swin_transformer',
|
|
'torchaudio_conformer', 'torchaudio_deepspeech', 'torchaudio_wavernn', 'torchaudio_tacotron',
|
|
'deepfm_interactionarch', 'deepfm_simpledeepfmnn', 'dlrm', 'dlrm_interactionarch',
|
|
'torchvision_googlenet', 'torchvision_inception_v3', 'torchvision_mobilenet_v3_small',
|
|
'torchvision_resnet18', 'torchvision_resnext50_32x4d', 'torchvision_wide_resnet50_2',
|
|
'torchvision_vit_b_16', 'torchvision_convnext_base', 'torchvision_swin_s', 'transformers_albert',
|
|
'transformers_albert_for_pretraining', 'transformers_bert', 'transformers_bert_for_pretraining',
|
|
'transformers_gpt_double_heads', 'torchaudio_hubert_base', 'torchaudio_wav2vec2_base',
|
|
'transformers_t5_for_conditional_generation', 'transformers_t5', 'transformers_t5_encoder_model'
|
|
]:
|
|
continue
|
|
|
|
try:
|
|
plugin = GeminiPlugin(placement_policy='cuda', strict_ddp_mode=True, max_norm=1.0, initial_scale=2**5)
|
|
booster = Booster(plugin=plugin)
|
|
model = model_fn()
|
|
optimizer = HybridAdam(model.parameters(), lr=1e-3)
|
|
criterion = lambda x: x.mean()
|
|
data = data_gen_fn()
|
|
|
|
data = {
|
|
k: v.to('cuda') if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__ else v
|
|
for k, v in data.items()
|
|
}
|
|
|
|
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
|
|
|
|
for n, p in model.named_parameters():
|
|
assert isinstance(p, ColoParameter), f'{n} is not a ColoParameter'
|
|
|
|
output = model(**data)
|
|
output = output_transform_fn(output)
|
|
output_key = list(output.keys())[0]
|
|
loss = criterion(output[output_key])
|
|
|
|
booster.backward(loss, optimizer)
|
|
optimizer.step()
|
|
passed_models.append(name)
|
|
|
|
del booster, plugin, model, optimizer, criterion, data, output, loss
|
|
except Exception as e:
|
|
failed_info[name] = e
|
|
if early_stop:
|
|
raise e
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
if dist.get_rank() == 0:
|
|
print(f'Passed models({len(passed_models)}): {passed_models}\n\n')
|
|
print(f'Failed models({len(failed_info)}): {list(failed_info.keys())}\n\n')
|
|
assert len(failed_info) == 0, '\n'.join([f'{k}: {v}' for k, v in failed_info.items()])
|
|
|
|
|
|
def check_dataloader_sharding():
|
|
plugin = GeminiPlugin()
|
|
|
|
# create a custom dasetset with 0 to 10
|
|
dataset = torch.utils.data.TensorDataset(torch.arange(0, 10))
|
|
train_dataloader = plugin.prepare_train_dataloader(dataset, batch_size=2)
|
|
|
|
# get the first batch of data
|
|
batch = next(iter(train_dataloader))[0].cuda()
|
|
is_rank_0 = dist.get_rank() == 0
|
|
|
|
if is_rank_0:
|
|
batch_to_compare = batch.clone()
|
|
else:
|
|
batch_to_compare = batch
|
|
# pass to the rank 1 value to rank 0
|
|
dist.broadcast(batch_to_compare, src=1)
|
|
|
|
# compare on rank 0
|
|
if is_rank_0:
|
|
assert not torch.equal(batch,
|
|
batch_to_compare), 'Same number was found across ranks but expected it to be different'
|
|
|
|
|
|
def run_dist(rank, world_size, port, early_stop: bool = True):
|
|
# init dist env
|
|
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
|
|
check_dataloader_sharding()
|
|
check_gemini_plugin(early_stop=early_stop)
|
|
|
|
|
|
@rerun_if_address_is_in_use()
|
|
def test_gemini_plugin(early_stop: bool = True):
|
|
world_size = 2
|
|
run_func = partial(run_dist, world_size=world_size, port=free_port(), early_stop=early_stop)
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_gemini_plugin(early_stop=False)
|