…
|
||
---|---|---|
.. | ||
__init__.py | ||
readme.md | ||
tensor_detector.py |
readme.md
Tensor Detector
This tool supports you to detect tensors on both CPU and GPU. However, there will always be some strange tensors on CPU, including the rng state of PyTorch.
Example
An example is worth than a thousand words.
The code below defines a simple MLP module, with which we will show you how to use the tool.
class MLP(nn.Module):
def __init__(self):
super().__init__()
self.mlp = nn.Sequential(nn.Linear(64, 8),
nn.ReLU(),
nn.Linear(8, 32))
def forward(self, x):
return self.mlp(x)
And here is how to use the tool.
from colossalai.utils import TensorDetector
# create random data
data = torch.rand(64, requires_grad=True).cuda()
data.retain_grad()
# create the module
model = MLP().cuda()
# create the detector
# by passing the model to the detector, it can distinguish module parameters from common tensors
detector = TensorDetector(include_cpu=False, module=model)
detector.detect()
out = model(data)
detector.detect()
loss = out.sum()
loss.backward()
detector.detect()
I have made some comments on the right of the output for your understanding.
Note that the total Mem
of all the tensors and parameters is not equal to Total GPU Memery Allocated
. PyTorch's memory management is really complicated, and for models of a large scale, it's impossible to figure out clearly.
The order of print is not equal to the order the tensor creates, but they are really close.
------------------------------------------------------------------------------------------------------------
Tensor device shape grad dtype Mem
------------------------------------------------------------------------------------------------------------
+ Tensor cuda:0 (64,) True torch.float32 256 B # data
+ mlp.0.weight cuda:0 (8, 64) True torch.float32 2.0 KB
+ mlp.0.bias cuda:0 (8,) True torch.float32 32 B
+ mlp.2.weight cuda:0 (32, 8) True torch.float32 1.0 KB
+ mlp.2.bias cuda:0 (32,) True torch.float32 128 B
------------------------------------------------------------------------------------------------------------
Detect Location: "test_tensor_detector.py" line 27
Totle GPU Memery Allocated on cuda:0 is 4.5 KB
------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------
Tensor device shape grad dtype Mem
------------------------------------------------------------------------------------------------------------
+ Tensor cuda:0 (8,) True torch.float32 32 B # activation
+ Tensor cuda:0 (32,) True torch.float32 128 B # output
------------------------------------------------------------------------------------------------------------
Detect Location: "test_tensor_detector.py" line 30
Totle GPU Memery Allocated on cuda:0 is 5.5 KB
------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------
Tensor device shape grad dtype Mem
------------------------------------------------------------------------------------------------------------
+ Tensor cuda:0 () True torch.float32 4 B # loss
------------------------------------------------------------------------------------------------------------
Detect Location: "test_tensor_detector.py" line 32
Totle GPU Memery Allocated on cuda:0 is 6.0 KB
------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------
Tensor device shape grad dtype Mem
------------------------------------------------------------------------------------------------------------
+ Tensor (with grad) cuda:0 (64,) True torch.float32 512 B # data with grad
+ mlp.0.weight (with grad) cuda:0 (8, 64) True torch.float32 4.0 KB # for use data.retain_grad()
+ mlp.0.bias (with grad) cuda:0 (8,) True torch.float32 64 B
+ mlp.2.weight (with grad) cuda:0 (32, 8) True torch.float32 2.0 KB
+ mlp.2.bias (with grad) cuda:0 (32,) True torch.float32 256 B
- mlp.0.weight cuda:0 (8, 64) True torch.float32 2.0 KB
- mlp.0.bias cuda:0 (8,) True torch.float32 32 B
- mlp.2.weight cuda:0 (32, 8) True torch.float32 1.0 KB
- mlp.2.bias cuda:0 (32,) True torch.float32 128 B
- Tensor cuda:0 (64,) True torch.float32 256 B
- Tensor cuda:0 (8,) True torch.float32 32 B # deleted activation
------------------------------------------------------------------------------------------------------------
Detect Location: "test_tensor_detector.py" line 34
Totle GPU Memery Allocated on cuda:0 is 10.0 KB
------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------
Tensor device shape grad dtype Mem
------------------------------------------------------------------------------------------------------------
+ Tensor cuda:0 (64,) False torch.float32 256 B
+ Tensor cuda:0 (8, 64) False torch.float32 2.0 KB
+ Tensor cuda:0 (8,) False torch.float32 32 B
+ Tensor cuda:0 (32, 8) False torch.float32 1.0 KB
+ Tensor cuda:0 (32,) False torch.float32 128 B
------------------------------------------------------------------------------------------------------------
Detect Location: "test_tensor_detector.py" line 36
Totle GPU Memery Allocated on cuda:0 is 14.0 KB
------------------------------------------------------------------------------------------------------------
Reference
This tool was inspired by https://github.com/Stonesjtu/pytorch_memlab/blob/master/pytorch_memlab/mem_reporter.py and https://github.com/Oldpan/Pytorch-Memory-Utils