ColossalAI/colossalai/communication/utils.py

110 lines
4.1 KiB
Python

import torch
import torch.distributed as dist
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.utils import get_current_device
def send_tensor_meta(tensor, need_meta=True, next_rank=None):
"""Sends tensor meta information before sending a specific tensor.
Since the recipient must know the shape of the tensor in p2p communications,
meta information of the tensor should be sent before communications. This function
synchronizes with :func:`recv_tensor_meta`.
:param tensor: Tensor to be sent
:param need_meta: If False, meta information won't be sent
:param next_rank: The rank of the next member in pipeline parallel group
:type tensor: Tensor
:type need_meta: bool, optional
:type next_rank: int
:return: False
:rtype: bool
"""
if need_meta:
if next_rank is None:
next_rank = gpc.get_next_global_rank(ParallelMode.PIPELINE)
tensor_kwargs = {'dtype': torch.long, 'device': get_current_device()}
send_shape = torch.tensor(tensor.size(), **tensor_kwargs)
send_ndims = torch.tensor(len(tensor.size()), **tensor_kwargs)
dist.send(send_ndims, next_rank)
dist.send(send_shape, next_rank)
return False
def recv_tensor_meta(tensor_shape, prev_rank=None):
"""Recieves tensor meta information before recieving a specific tensor.
Since the recipient must know the shape of the tensor in p2p communications,
meta information of the tensor should be recieved before communications. This function
synchronizes with :func:`send_tensor_meta`.
:param tensor_shape: The shape of the tensor to be recieved
:param prev_rank: The rank of the source of the tensor
:type tensor_shape: torch.Size
:type prev_rank: int, optional
:return: The shape of the tensor to be recieved
:rtype: torch.Size
"""
if tensor_shape is None:
if prev_rank is None:
prev_rank = gpc.get_prev_global_rank(ParallelMode.PIPELINE)
tensor_kwargs = {'dtype': torch.long, 'device': get_current_device()}
recv_ndims = torch.empty((), **tensor_kwargs)
dist.recv(recv_ndims, prev_rank)
recv_shape = torch.empty(recv_ndims, **tensor_kwargs)
dist.recv(recv_shape, prev_rank)
tensor_shape = torch.Size(recv_shape)
return tensor_shape
def split_tensor_into_1d_equal_chunks(tensor, new_buffer=False):
"""Break a tensor into equal 1D chunks.
:param tensor: Tensor to be splitted before communication
:param new_buffer: Whether uses a new buffer to store sliced tensor
:type tensor: torch.Tensor
:type new_buffer: bool, optional
:return splitted_tensor: The splitted tensor
:rtype splitted_tensor: torch.Tensor
"""
partition_size = torch.numel(tensor) // gpc.get_world_size(ParallelMode.PARALLEL_1D)
start_index = partition_size * gpc.get_local_rank(ParallelMode.PARALLEL_1D)
end_index = start_index + partition_size
if new_buffer:
data = torch.empty(partition_size, dtype=tensor.dtype,
device=torch.cuda.current_device(),
requires_grad=False)
data.copy_(tensor.view(-1)[start_index:end_index])
else:
data = tensor.view(-1)[start_index:end_index]
return data
def gather_split_1d_tensor(tensor):
"""Opposite of above function, gather values from model parallel ranks.
:param tensor: Tensor to be gathered after communication
:type tensor: torch.Tensor
:return gathered: The gathered tensor
:rtype gathered: torch.Tensor
"""
world_size = gpc.get_world_size(ParallelMode.PARALLEL_1D)
numel = torch.numel(tensor)
numel_gathered = world_size * numel
gathered = torch.empty(numel_gathered, dtype=tensor.dtype,
device=torch.cuda.current_device(),
requires_grad=False)
chunks = [gathered[i * numel:(i + 1) * numel] for i in range(world_size)]
dist.all_gather(chunks, tensor, group=gpc.get_group(ParallelMode.PARALLEL_1D))
return gathered