mirror of https://github.com/hpcaitech/ColossalAI
357 lines
15 KiB
Python
357 lines
15 KiB
Python
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
from typing import List, Tuple, Union
|
|
import torch
|
|
import torch.distributed as dist
|
|
|
|
from colossalai.context.parallel_mode import ParallelMode
|
|
from colossalai.core import global_context as gpc
|
|
from colossalai.utils import get_current_device
|
|
from functools import reduce
|
|
import operator
|
|
from .utils import split_tensor_into_1d_equal_chunks, gather_split_1d_tensor
|
|
|
|
|
|
TensorShape = Union[torch.Size, List[int], Tuple[int]]
|
|
|
|
|
|
def _get_tensor_shape(tensor_shape: TensorShape, chunk_tensor: bool = False) -> Tuple[TensorShape, bool]:
|
|
"""get the exact tensor shape when communicating and return whether the tensor is a chunk
|
|
|
|
:param tensor_shape: shape of tensor
|
|
:type tensor_shape: TensorShape
|
|
:param chunk_tensor: whether to chunk tensor, defaults to False
|
|
:type chunk_tensor: bool, optional
|
|
:return: exact tensor shape, whether to chunk tensor
|
|
:rtype: Tuple[Union[torch.Size, List[int], Tuple[int]], bool]
|
|
"""
|
|
if chunk_tensor:
|
|
tensor_chunk_shape = reduce(operator.mul, tensor_shape, 1)
|
|
tensor_parallel_world_size = gpc.get_world_size(ParallelMode.TENSOR)
|
|
if tensor_chunk_shape % tensor_parallel_world_size == 0:
|
|
tensor_chunk_shape = tensor_chunk_shape // tensor_parallel_world_size
|
|
else:
|
|
tensor_chunk_shape = tensor_shape
|
|
chunk_tensor = False
|
|
else:
|
|
tensor_chunk_shape = tensor_shape
|
|
return tensor_chunk_shape, chunk_tensor
|
|
|
|
|
|
def _communicate(tensor_send_next=None,
|
|
tensor_send_prev=None,
|
|
recv_prev=False,
|
|
recv_next=False,
|
|
recv_prev_shape=None,
|
|
recv_next_shape=None,
|
|
prev_rank=None,
|
|
next_rank=None,
|
|
dtype=None,
|
|
scatter_gather_tensors=False):
|
|
"""
|
|
Adapted from megatron.p2p_communication.
|
|
Communicate tensors between stages. Used as helper method in other
|
|
communication methods that are used in pipeline schedule.
|
|
Takes the following arguments:
|
|
tensor_send_next: tensor to send to next rank (no tensor sent if
|
|
set to None).
|
|
tensor_send_prev: tensor to send to prev rank (no tensor sent if
|
|
set to None).
|
|
recv_prev: boolean for whether tensor should be received from
|
|
previous rank.
|
|
recv_next: boolean for whether tensor should be received from
|
|
next rank.
|
|
Returns:
|
|
(tensor_recv_prev, tensor_recv_next)
|
|
"""
|
|
|
|
# Create placeholder tensors for receive in forward and backward directions
|
|
# if needed.
|
|
tensor_recv_prev = None
|
|
tensor_recv_next = None
|
|
|
|
if recv_prev:
|
|
assert recv_prev_shape is not None
|
|
recv_prev_chunk_shape, recv_prev_split = _get_tensor_shape(recv_prev_shape, scatter_gather_tensors)
|
|
tensor_recv_prev = torch.empty(recv_prev_chunk_shape,
|
|
requires_grad=True,
|
|
device=get_current_device(),
|
|
dtype=dtype)
|
|
if recv_next:
|
|
assert recv_next_shape is not None
|
|
recv_next_chunk_shape, recv_next_split = _get_tensor_shape(recv_next_shape, scatter_gather_tensors)
|
|
tensor_recv_next = torch.empty(recv_next_chunk_shape,
|
|
requires_grad=True,
|
|
device=get_current_device(),
|
|
dtype=dtype)
|
|
|
|
if tensor_send_prev is not None or recv_prev:
|
|
if prev_rank is None:
|
|
prev_rank = gpc.get_prev_global_rank(
|
|
ParallelMode.PIPELINE)
|
|
|
|
if tensor_send_next is not None or recv_next:
|
|
if next_rank is None:
|
|
next_rank = gpc.get_next_global_rank(
|
|
ParallelMode.PIPELINE)
|
|
|
|
if tensor_send_prev is not None:
|
|
send_prev_split = _get_tensor_shape(tensor_send_prev.shape, scatter_gather_tensors)[1]
|
|
if send_prev_split:
|
|
tensor_send_prev = split_tensor_into_1d_equal_chunks(tensor_send_prev)
|
|
|
|
if tensor_send_next is not None:
|
|
send_next_split = _get_tensor_shape(tensor_send_next.shape, scatter_gather_tensors)[1]
|
|
if send_next_split:
|
|
tensor_send_next = split_tensor_into_1d_equal_chunks(tensor_send_next)
|
|
|
|
ops = []
|
|
if tensor_send_prev is not None:
|
|
send_prev_op = dist.P2POp(dist.isend, tensor_send_prev, prev_rank)
|
|
ops.append(send_prev_op)
|
|
if tensor_recv_prev is not None:
|
|
recv_prev_op = dist.P2POp(dist.irecv, tensor_recv_prev, prev_rank)
|
|
ops.append(recv_prev_op)
|
|
if tensor_recv_next is not None:
|
|
recv_next_op = dist.P2POp(dist.irecv, tensor_recv_next, next_rank)
|
|
ops.append(recv_next_op)
|
|
if tensor_send_next is not None:
|
|
send_next_op = dist.P2POp(dist.isend, tensor_send_next, next_rank)
|
|
ops.append(send_next_op)
|
|
if len(ops) > 0:
|
|
reqs = dist.batch_isend_irecv(ops)
|
|
for req in reqs:
|
|
req.wait()
|
|
# To protect against race condition when using batch_isend_irecv().
|
|
torch.cuda.synchronize()
|
|
|
|
if recv_prev and recv_prev_split:
|
|
tensor_recv_prev = gather_split_1d_tensor(tensor_recv_prev).view(recv_prev_shape).requires_grad_()
|
|
if recv_next and recv_next_split:
|
|
tensor_recv_next = gather_split_1d_tensor(tensor_recv_next).view(recv_next_shape).requires_grad_()
|
|
return tensor_recv_prev, tensor_recv_next
|
|
|
|
|
|
def recv_forward(input_tensor_shape, prev_rank=None, dtype=torch.float, scatter_gather_tensors=False):
|
|
"""Receives the input tensor from the previous member in pipeline.
|
|
|
|
:param input_tensor_shape: The shape of the tensor to be recieved
|
|
:param prev_rank: The rank of the source of the tensor
|
|
:type input_tensor_shape: torch.Size
|
|
:type prev_rank: int, optional
|
|
:return: The input tensor in forward step
|
|
:rtype: :class:`torch.Tensor`
|
|
"""
|
|
if gpc.is_pipeline_first_stage():
|
|
input_tensor = None
|
|
else:
|
|
input_tensor, _ = _communicate(recv_prev=True,
|
|
recv_prev_shape=input_tensor_shape,
|
|
prev_rank=prev_rank,
|
|
dtype=dtype,
|
|
scatter_gather_tensors=scatter_gather_tensors)
|
|
return input_tensor
|
|
|
|
|
|
def recv_backward(output_grad_shape, next_rank=None, dtype=torch.float, scatter_gather_tensors=False):
|
|
"""Receives the grad tensor from the next member in pipeline.
|
|
|
|
:param output_grad_shape: The shape of the tensor to be recieved
|
|
:param next_rank: The rank of the source of the tensor
|
|
:type output_grad_shape: torch.Size
|
|
:type next_rank: int, optional
|
|
:return: The grad of output tensor in forward step
|
|
:rtype: :class:`torch.Tensor`
|
|
"""
|
|
if gpc.is_pipeline_last_stage():
|
|
output_tensor_grad = None
|
|
else:
|
|
_, output_tensor_grad = _communicate(recv_next=True,
|
|
recv_next_shape=output_grad_shape,
|
|
next_rank=next_rank,
|
|
dtype=dtype,
|
|
scatter_gather_tensors=scatter_gather_tensors)
|
|
return output_tensor_grad
|
|
|
|
|
|
def send_forward(output_tensor, next_rank=None, scatter_gather_tensors=False):
|
|
"""Sends the input tensor to the next member in pipeline.
|
|
|
|
:param output_tensor: Tensor to be sent
|
|
:param next_rank: The rank of the recipient of the tensor
|
|
:type output_tensor: :class:`torch.Tensor`
|
|
:type next_rank: int, optional
|
|
"""
|
|
if not gpc.is_pipeline_last_stage():
|
|
_communicate(tensor_send_next=output_tensor,
|
|
next_rank=next_rank,
|
|
scatter_gather_tensors=scatter_gather_tensors)
|
|
|
|
|
|
def send_backward(input_tensor_grad, prev_rank=None, scatter_gather_tensors=False):
|
|
"""Sends the grad tensor to the previous member in pipeline.
|
|
|
|
:param input_tensor_grad: Tensor to be sent
|
|
:param prev_rank: The rank of the recipient of the tensor
|
|
:type input_tensor_grad: :class:`torch.Tensor`
|
|
:type prev_rank: int, optional
|
|
"""
|
|
if not gpc.is_pipeline_first_stage():
|
|
_communicate(tensor_send_prev=input_tensor_grad,
|
|
prev_rank=prev_rank,
|
|
scatter_gather_tensors=scatter_gather_tensors)
|
|
|
|
|
|
def send_forward_recv_backward(output_tensor,
|
|
output_grad_shape,
|
|
recv_next=True,
|
|
next_rank=None,
|
|
dtype=torch.float,
|
|
scatter_gather_tensors=False):
|
|
"""Batched communication operation. Sends the input tensor to the
|
|
next member in pipeline, while recieves the grad tensor from the
|
|
next member in pipeline.
|
|
|
|
:param output_tensor: Tensor to be sent
|
|
:param output_grad_shape: The shape of the tensor to be recieved
|
|
:type output_tensor: :class:`torch.Tensor`
|
|
:type output_grad_shape: :class:`torch.Size`
|
|
:return: The grad of output tensor in forward step
|
|
:rtype: :class:`torch.Tensor`
|
|
"""
|
|
if gpc.is_pipeline_last_stage():
|
|
output_tensor_grad = None
|
|
else:
|
|
_, output_tensor_grad = _communicate(tensor_send_next=output_tensor,
|
|
recv_next=recv_next,
|
|
recv_next_shape=output_grad_shape,
|
|
next_rank=next_rank,
|
|
dtype=dtype,
|
|
scatter_gather_tensors=scatter_gather_tensors)
|
|
return output_tensor_grad
|
|
|
|
|
|
def send_backward_recv_forward(input_tensor_grad,
|
|
input_tensor_shape,
|
|
recv_prev=True,
|
|
prev_rank=None,
|
|
dtype=torch.float,
|
|
scatter_gather_tensors=False):
|
|
"""Batched communication operation. Sends the grad tensor to the
|
|
previous member in pipeline, while recieves the input tensor from the
|
|
previous member in pipeline.
|
|
|
|
:param input_tensor_grad: Tensor to be sent
|
|
:param input_tensor_shape: The shape of the tensor to be recieved
|
|
:type input_tensor_grad: :class:`torch.Tensor`
|
|
:type input_tensor_shape: :class:`torch.Size`
|
|
:return: The input tensor in forward step
|
|
:rtype: :class:`torch.Tensor`
|
|
"""
|
|
if gpc.is_pipeline_first_stage():
|
|
input_tensor = None
|
|
else:
|
|
input_tensor, _ = _communicate(tensor_send_prev=input_tensor_grad,
|
|
recv_prev=recv_prev,
|
|
recv_prev_shape=input_tensor_shape,
|
|
prev_rank=prev_rank,
|
|
dtype=dtype,
|
|
scatter_gather_tensors=scatter_gather_tensors)
|
|
return input_tensor
|
|
|
|
|
|
def send_forward_recv_forward(output_tensor,
|
|
input_tensor_shape,
|
|
recv_prev=True,
|
|
prev_rank=None,
|
|
next_rank=None,
|
|
dtype=torch.float,
|
|
scatter_gather_tensors=False):
|
|
"""Batched communication operation. Sends the input tensor to the
|
|
next member in pipeline, while recieves the input tensor from the
|
|
previous member in pipeline.
|
|
|
|
:param output_tensor: Tensor to be sent
|
|
:param input_tensor_shape: The shape of the tensor to be recieved
|
|
:type output_tensor: :class:`torch.Tensor`
|
|
:type input_tensor_shape: :class:`torch.Size`
|
|
:return: The input tensor in forward step
|
|
:rtype: :class:`torch.Tensor`
|
|
"""
|
|
input_tensor, _ = _communicate(tensor_send_next=output_tensor,
|
|
recv_prev=recv_prev,
|
|
recv_prev_shape=input_tensor_shape,
|
|
prev_rank=prev_rank,
|
|
next_rank=next_rank,
|
|
dtype=dtype,
|
|
scatter_gather_tensors=scatter_gather_tensors)
|
|
return input_tensor
|
|
|
|
|
|
def send_backward_recv_backward(input_tensor_grad,
|
|
output_grad_shape,
|
|
recv_next=True,
|
|
prev_rank=None,
|
|
next_rank=None,
|
|
dtype=torch.float,
|
|
scatter_gather_tensors=False):
|
|
"""Batched communication operation. Sends the grad tensor to the
|
|
previous member in pipeline, while recieves the grad tensor from the
|
|
next member in pipeline.
|
|
|
|
:param input_tensor_grad: Tensor to be sent
|
|
:param output_grad_shape: The shape of the tensor to be recieved
|
|
:type input_tensor_grad: :class:`torch.Tensor`
|
|
:type output_grad_shape: :class:`torch.Size`
|
|
:return: The grad of output tensor in forward step
|
|
:rtype: :class:`torch.Tensor`
|
|
"""
|
|
_, output_tensor_grad = _communicate(tensor_send_prev=input_tensor_grad,
|
|
recv_next=recv_next,
|
|
recv_next_shape=output_grad_shape,
|
|
prev_rank=prev_rank,
|
|
next_rank=next_rank,
|
|
dtype=dtype,
|
|
scatter_gather_tensors=scatter_gather_tensors)
|
|
return output_tensor_grad
|
|
|
|
|
|
def send_forward_backward_recv_forward_backward(output_tensor,
|
|
input_tensor_grad,
|
|
input_tensor_shape,
|
|
output_grad_shape,
|
|
recv_prev=True,
|
|
recv_next=True,
|
|
prev_rank=None,
|
|
next_rank=None,
|
|
dtype=torch.float,
|
|
scatter_gather_tensors=False):
|
|
"""Batched communication operation. Sends the input tensor to the next and
|
|
the grad tensor to the previous, while recieves the grad tensor from the
|
|
next and the input tensor from the previous.
|
|
|
|
:param output_tensor: Tensor sent to the next
|
|
:param input_tensor_grad: Tensor sent to the previous
|
|
:param input_tensor_shape: The shape of the tensor recieved from the previous
|
|
:param output_grad_shape: The shape of the tensor recieved from the next
|
|
:type output_tensor: :class:`torch.Tensor`
|
|
:type input_tensor_grad: :class:`torch.Tensor`
|
|
:type input_tensor_shape: :class:`torch.Size`
|
|
:type output_grad_shape: :class:`torch.Size`
|
|
:return: (the input tensor in forward step, the grad of output tensor in forward step)
|
|
:rtype: (Tensor, Tensor)
|
|
"""
|
|
input_tensor, output_tensor_grad = _communicate(
|
|
tensor_send_next=output_tensor,
|
|
tensor_send_prev=input_tensor_grad,
|
|
recv_prev=recv_prev,
|
|
recv_next=recv_next,
|
|
recv_prev_shape=input_tensor_shape,
|
|
recv_next_shape=output_grad_shape,
|
|
prev_rank=prev_rank,
|
|
next_rank=next_rank,
|
|
dtype=dtype,
|
|
scatter_gather_tensors=scatter_gather_tensors)
|
|
return input_tensor, output_tensor_grad
|