ColossalAI/examples/colossal_cifar_demo.ipynb

371 lines
16 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "uhrbvVEh2iJd"
},
"source": [
"# Train an image classifier\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "vP7LvCpG23a2",
"outputId": "b37f7203-8a02-4736-c527-603f2bb34d7d"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: ColossalAI in /usr/local/lib/python3.7/dist-packages (0.1)\n",
"Requirement already satisfied: deepspeed in /usr/local/lib/python3.7/dist-packages (0.5.4)\n",
"Requirement already satisfied: packaging in /usr/local/lib/python3.7/dist-packages (from deepspeed) (21.0)\n",
"Requirement already satisfied: triton in /usr/local/lib/python3.7/dist-packages (from deepspeed) (1.1.1)\n",
"Requirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from deepspeed) (4.62.3)\n",
"Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from deepspeed) (1.19.5)\n",
"Requirement already satisfied: tensorboardX==1.8 in /usr/local/lib/python3.7/dist-packages (from deepspeed) (1.8)\n",
"Requirement already satisfied: ninja in /usr/local/lib/python3.7/dist-packages (from deepspeed) (1.10.2.2)\n",
"Requirement already satisfied: torch in /usr/local/lib/python3.7/dist-packages (from deepspeed) (1.9.0+cu111)\n",
"Requirement already satisfied: psutil in /usr/local/lib/python3.7/dist-packages (from deepspeed) (5.4.8)\n",
"Requirement already satisfied: protobuf>=3.2.0 in /usr/local/lib/python3.7/dist-packages (from tensorboardX==1.8->deepspeed) (3.17.3)\n",
"Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from tensorboardX==1.8->deepspeed) (1.15.0)\n",
"Requirement already satisfied: pyparsing>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging->deepspeed) (2.4.7)\n",
"Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from torch->deepspeed) (3.7.4.3)\n",
"Requirement already satisfied: filelock in /usr/local/lib/python3.7/dist-packages (from triton->deepspeed) (3.3.0)\n"
]
}
],
"source": [
"!pip install ColossalAI deepspeed"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "UVKEurtS4SFS",
"outputId": "99fb6050-5da7-4f27-b4eb-9b3ccf830efb"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Please install apex to use FP16 Optimizer\n",
"Apex should be installed to use the FP16 optimizer\n",
"apex is required for mixed precision training\n"
]
}
],
"source": [
"import colossalai\n",
"from colossalai.engine import Engine, NonPipelineSchedule\n",
"from colossalai.trainer import Trainer\n",
"from colossalai.context import Config\n",
"import torch"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "PpFfhNBD7NSn"
},
"source": [
"First, we should initialize distributed environment. Though we just use single GPU in this example, we still need initialize distributed environment for compatibility. We just consider the simplest case here, so we just set the number of parallel processes to 1."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "8yF7Lc-K7NAS",
"outputId": "01312349-a8b0-4de4-9103-7d1b48e6cc36"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"colossalai - torch.distributed.distributed_c10d - 2021-10-15 03:27:51,596 INFO: Added key: store_based_barrier_key:1 to store for rank: 0\n",
"colossalai - torch.distributed.distributed_c10d - 2021-10-15 03:27:51,598 INFO: Rank 0: Completed store-based barrier for 1 nodes.\n",
"colossalai - torch.distributed.distributed_c10d - 2021-10-15 03:27:51,602 INFO: Added key: store_based_barrier_key:2 to store for rank: 0\n",
"colossalai - torch.distributed.distributed_c10d - 2021-10-15 03:27:51,605 INFO: Rank 0: Completed store-based barrier for 1 nodes.\n",
"colossalai - torch.distributed.distributed_c10d - 2021-10-15 03:27:51,608 INFO: Added key: store_based_barrier_key:3 to store for rank: 0\n",
"colossalai - torch.distributed.distributed_c10d - 2021-10-15 03:27:51,610 INFO: Rank 0: Completed store-based barrier for 1 nodes.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"process rank 0 is bound to device 0\n",
"initialized seed on rank 0, numpy: 1024, python random: 1024, ParallelMode.DATA: 1024, ParallelMode.TENSOR: 1124,the default parallel seed is ParallelMode.DATA.\n"
]
}
],
"source": [
"parallel_cfg = Config(dict(parallel=dict(\n",
" data=dict(size=1),\n",
" pipeline=dict(size=1),\n",
" tensor=dict(size=1, mode=None),\n",
")))\n",
"colossalai.init_dist(config=parallel_cfg,\n",
" local_rank=0,\n",
" world_size=1,\n",
" host='127.0.0.1',\n",
" port=8888,\n",
" backend='nccl')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ppjmMxc_81TK"
},
"source": [
"Load and normalize the CIFAR10 training and test datasets using `colossalai.nn.data`. Note that we have wrapped `torchvision.transforms`, so that we can simply use the config dict to use them."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ZyGhyD47-dUY",
"outputId": "98bbf2d1-a1c4-4bb4-b6df-600777b1e8f5"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Files already downloaded and verified\n",
"Files already downloaded and verified\n"
]
}
],
"source": [
"transform_cfg = [\n",
" dict(type='ToTensor'),\n",
" dict(type='Normalize',\n",
" mean=[0.4914, 0.4822, 0.4465],\n",
" std=[0.2023, 0.1994, 0.2010]),\n",
"]\n",
"\n",
"batch_size = 128\n",
"\n",
"trainset = colossalai.nn.data.CIFAR10Dataset(transform_cfg, root='./data', train=True)\n",
"trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=2)\n",
"\n",
"testset = colossalai.nn.data.CIFAR10Dataset(transform_cfg, root='./data', train=False)\n",
"testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=2)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "NvPbfLLR9NzC"
},
"source": [
"We just define a simple Convolutional Neural Network here."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "cQ_y7lBG09LS"
},
"outputs": [],
"source": [
"import torch.nn as nn\n",
"import torch.nn.functional as F\n",
"\n",
"\n",
"class Net(nn.Module):\n",
" def __init__(self):\n",
" super().__init__()\n",
" self.conv1 = nn.Conv2d(3, 6, 5)\n",
" self.pool = nn.MaxPool2d(2, 2)\n",
" self.conv2 = nn.Conv2d(6, 16, 5)\n",
" self.fc1 = nn.Linear(16 * 5 * 5, 120)\n",
" self.fc2 = nn.Linear(120, 84)\n",
" self.fc3 = nn.Linear(84, 10)\n",
"\n",
" def forward(self, x):\n",
" x = self.pool(F.relu(self.conv1(x)))\n",
" x = self.pool(F.relu(self.conv2(x)))\n",
" x = torch.flatten(x, 1) # flatten all dimensions except batch\n",
" x = F.relu(self.fc1(x))\n",
" x = F.relu(self.fc2(x))\n",
" x = self.fc3(x)\n",
" return x\n",
"\n",
"\n",
"model = Net().cuda()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "tgsszAmM9dYZ"
},
"source": [
"Define a Loss function and optimizer. And then we use them to initialize `Engine` and `Trainer`. We provide various training / evaluating hooks. In this case, we just use the simplest hooks which can compute and print loss and accuracy."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "YtaDoCax1BCf",
"outputId": "b33b1641-03d8-4597-c8c2-1a4c1d61e9b0"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"colossalai - rank_0 - 2021-10-15 03:27:56,018 WARNING: No gradient handler is set up, please make sure you do not need to all-reduce the gradients after a training step.\n",
"colossalai - rank_0 - 2021-10-15 03:27:56,024 INFO: build LogMetricByEpochHook for train, priority = 1\n",
"colossalai - rank_0 - 2021-10-15 03:27:56,026 INFO: build LossHook for train, priority = 10\n",
"colossalai - rank_0 - 2021-10-15 03:27:56,029 INFO: build AccuracyHook for train, priority = 10\n"
]
}
],
"source": [
"import torch.optim as optim\n",
"\n",
"criterion = nn.CrossEntropyLoss()\n",
"optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)\n",
"schedule = NoPipelineSchedule()\n",
"engine = Engine(\n",
" model=model,\n",
" criterion=criterion,\n",
" optimizer=optimizer,\n",
" lr_scheduler=None,\n",
" schedule=schedule\n",
" )\n",
"trainer = Trainer(engine=engine,\n",
" hooks_cfg=[dict(type='LossHook'), dict(type='LogMetricByEpochHook'), dict(type='AccuracyHook')],\n",
" verbose=True)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_JR2TuvH99Ik"
},
"source": [
"Then we set training configs. We train our model for 10 epochs and it will be evaluated every 1 epoch. Set `display_progress` to `True` to display the training / evaluating progress bar."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "w-J3IP-J1sfx",
"outputId": "bdb76939-04f1-4124-ce5e-3af44c0d902c"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"[Epoch 0 train]: 0%| | 0/391 [00:00<?, ?it/s]/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
" return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)\n",
"[Epoch 0 train]: 100%|██████████| 391/391 [00:14<00:00, 26.82it/s]\n",
"colossalai - rank_0 - 2021-10-15 03:28:11,088 INFO: Training - Epoch 1 - LogMetricByEpochHook: Loss = 2.29158\n",
"[Epoch 0 val]: 100%|██████████| 79/79 [00:02<00:00, 28.66it/s]\n",
"colossalai - rank_0 - 2021-10-15 03:28:14,040 INFO: Testing - Epoch 1 - LogMetricByEpochHook: Loss = 2.26517, Accuracy = 0.14820\n",
"[Epoch 1 train]: 100%|██████████| 391/391 [00:14<00:00, 26.31it/s]\n",
"colossalai - rank_0 - 2021-10-15 03:28:29,059 INFO: Training - Epoch 2 - LogMetricByEpochHook: Loss = 2.15763\n",
"[Epoch 1 val]: 100%|██████████| 79/79 [00:02<00:00, 28.50it/s]\n",
"colossalai - rank_0 - 2021-10-15 03:28:32,007 INFO: Testing - Epoch 2 - LogMetricByEpochHook: Loss = 2.00450, Accuracy = 0.27850\n",
"[Epoch 2 train]: 100%|██████████| 391/391 [00:14<00:00, 26.08it/s]\n",
"colossalai - rank_0 - 2021-10-15 03:28:47,167 INFO: Training - Epoch 3 - LogMetricByEpochHook: Loss = 1.85409\n",
"[Epoch 2 val]: 100%|██████████| 79/79 [00:02<00:00, 27.89it/s]\n",
"colossalai - rank_0 - 2021-10-15 03:28:50,168 INFO: Testing - Epoch 3 - LogMetricByEpochHook: Loss = 1.73788, Accuracy = 0.35990\n",
"[Epoch 3 train]: 100%|██████████| 391/391 [00:14<00:00, 26.09it/s]\n",
"colossalai - rank_0 - 2021-10-15 03:29:05,330 INFO: Training - Epoch 4 - LogMetricByEpochHook: Loss = 1.69363\n",
"[Epoch 3 val]: 100%|██████████| 79/79 [00:02<00:00, 28.43it/s]\n",
"colossalai - rank_0 - 2021-10-15 03:29:08,290 INFO: Testing - Epoch 4 - LogMetricByEpochHook: Loss = 1.65005, Accuracy = 0.39350\n",
"[Epoch 4 train]: 100%|██████████| 391/391 [00:15<00:00, 25.97it/s]\n",
"colossalai - rank_0 - 2021-10-15 03:29:23,530 INFO: Training - Epoch 5 - LogMetricByEpochHook: Loss = 1.61387\n",
"[Epoch 4 val]: 100%|██████████| 79/79 [00:02<00:00, 27.75it/s]\n",
"colossalai - rank_0 - 2021-10-15 03:29:26,515 INFO: Testing - Epoch 5 - LogMetricByEpochHook: Loss = 1.57507, Accuracy = 0.42430\n",
"[Epoch 5 train]: 100%|██████████| 391/391 [00:15<00:00, 25.92it/s]\n",
"colossalai - rank_0 - 2021-10-15 03:29:41,764 INFO: Training - Epoch 6 - LogMetricByEpochHook: Loss = 1.55712\n",
"[Epoch 5 val]: 100%|██████████| 79/79 [00:02<00:00, 27.51it/s]\n",
"colossalai - rank_0 - 2021-10-15 03:29:44,778 INFO: Testing - Epoch 6 - LogMetricByEpochHook: Loss = 1.53242, Accuracy = 0.43700\n",
"[Epoch 6 train]: 100%|██████████| 391/391 [00:14<00:00, 26.13it/s]\n",
"colossalai - rank_0 - 2021-10-15 03:29:59,927 INFO: Training - Epoch 7 - LogMetricByEpochHook: Loss = 1.51618\n",
"[Epoch 6 val]: 100%|██████████| 79/79 [00:02<00:00, 28.31it/s]\n",
"colossalai - rank_0 - 2021-10-15 03:30:02,884 INFO: Testing - Epoch 7 - LogMetricByEpochHook: Loss = 1.49720, Accuracy = 0.45430\n",
"[Epoch 7 train]: 100%|██████████| 391/391 [00:14<00:00, 26.23it/s]\n",
"colossalai - rank_0 - 2021-10-15 03:30:17,968 INFO: Training - Epoch 8 - LogMetricByEpochHook: Loss = 1.47857\n",
"[Epoch 7 val]: 100%|██████████| 79/79 [00:02<00:00, 27.97it/s]\n",
"colossalai - rank_0 - 2021-10-15 03:30:20,967 INFO: Testing - Epoch 8 - LogMetricByEpochHook: Loss = 1.45808, Accuracy = 0.46320\n",
"[Epoch 8 train]: 100%|██████████| 391/391 [00:14<00:00, 26.11it/s]\n",
"colossalai - rank_0 - 2021-10-15 03:30:36,129 INFO: Training - Epoch 9 - LogMetricByEpochHook: Loss = 1.44656\n",
"[Epoch 8 val]: 100%|██████████| 79/79 [00:02<00:00, 28.18it/s]\n",
"colossalai - rank_0 - 2021-10-15 03:30:39,096 INFO: Testing - Epoch 9 - LogMetricByEpochHook: Loss = 1.44903, Accuracy = 0.46580\n",
"[Epoch 9 train]: 100%|██████████| 391/391 [00:15<00:00, 25.97it/s]\n",
"colossalai - rank_0 - 2021-10-15 03:30:54,342 INFO: Training - Epoch 10 - LogMetricByEpochHook: Loss = 1.41120\n",
"[Epoch 9 val]: 100%|██████████| 79/79 [00:02<00:00, 28.05it/s]\n",
"colossalai - rank_0 - 2021-10-15 03:30:57,332 INFO: Testing - Epoch 10 - LogMetricByEpochHook: Loss = 1.41242, Accuracy = 0.48500\n"
]
}
],
"source": [
"num_epochs = 10\n",
"test_interval = 1\n",
"trainer.fit(\n",
" train_dataloader=trainloader,\n",
" test_dataloader=testloader,\n",
" max_epochs=num_epochs,\n",
" display_progress=True,\n",
" test_interval=test_interval\n",
" )"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"name": "colossal_cifar_demo.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}