mirror of https://github.com/hpcaitech/ColossalAI
378 lines
13 KiB
Python
378 lines
13 KiB
Python
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
from typing import Union, List
|
|
from colossalai import engine
|
|
from colossalai.context.parallel_mode import ParallelMode
|
|
|
|
import torch
|
|
from torch import Tensor
|
|
from torch.utils.data import DataLoader
|
|
from tqdm import tqdm
|
|
|
|
from colossalai.core import global_context as gpc
|
|
from colossalai.engine import Engine
|
|
from colossalai.engine.schedule import NonPipelineSchedule, BaseSchedule
|
|
from colossalai.logging import DistributedLogger
|
|
from colossalai.utils import MultiTimer
|
|
from colossalai.utils import is_dp_rank_0, is_tp_rank_0, is_no_pp_or_last_stage
|
|
from .hooks import BaseHook
|
|
|
|
|
|
class Trainer:
|
|
"""This a class tending for easy deployments of users' training and evaluation instead of
|
|
writing their own scripts. It is similar with ``ignite.engine`` and ``keras.engine``, but is
|
|
called `Trainer`.
|
|
|
|
:param engine: Engine responsible for the process function
|
|
:param hooks_cfg: The configuration of hooks
|
|
:param verbose: If True, additional information will be printed
|
|
:type engine: Engine
|
|
:type hoooks_cfg: Config, optional
|
|
:type verbose: bool, optional
|
|
"""
|
|
|
|
def __init__(self,
|
|
engine: Engine,
|
|
schedule: BaseSchedule = None,
|
|
timer: MultiTimer = None,
|
|
logger: DistributedLogger = None):
|
|
# training-ralated params
|
|
self._engine = engine
|
|
self._max_epochs = 0
|
|
self._cur_epoch = 0
|
|
self._max_steps = 0
|
|
self._cur_step = 0
|
|
self._steps_per_epoch = 0
|
|
|
|
# misc params
|
|
self._logger = logger
|
|
self._verbose = logger is not None
|
|
|
|
# hooks can store states in this dict, and could be consumed by other hooks
|
|
self.states = dict()
|
|
|
|
# build hooks
|
|
self.hooks = list()
|
|
|
|
# multi-timer for time benchmarking
|
|
self._timer = timer
|
|
|
|
# set schedule which specifies the training iteration for the engine
|
|
if schedule is None:
|
|
schedule = NonPipelineSchedule()
|
|
if gpc.is_initialized(ParallelMode.PIPELINE) and gpc.get_world_size(ParallelMode.PIPELINE) > 1:
|
|
assert not isinstance(schedule, NonPipelineSchedule), \
|
|
'NonPipelineSchedule cannot be used for pipeline parallel training, please use PipelineSchedule instead.'
|
|
self._schedule = schedule
|
|
self._schedule.pre_processing(engine)
|
|
|
|
@property
|
|
def cur_epoch(self):
|
|
"""Returns the index of the current epoch.
|
|
"""
|
|
return self._cur_epoch
|
|
|
|
@cur_epoch.setter
|
|
def cur_epoch(self, epoch: int):
|
|
"""Set how many epochs have been processed.
|
|
"""
|
|
# allow setter for training resumption
|
|
self._cur_epoch = epoch
|
|
|
|
@property
|
|
def cur_step(self):
|
|
"""Returns how many iteration steps have been processed.
|
|
"""
|
|
return self._cur_step
|
|
|
|
@property
|
|
def max_epochs(self):
|
|
return self._max_epochs
|
|
|
|
@property
|
|
def max_steps(self):
|
|
return self._max_steps
|
|
|
|
@property
|
|
def steps_per_epoch(self):
|
|
return self._steps_per_epoch
|
|
|
|
@property
|
|
def engine(self):
|
|
return self._engine
|
|
|
|
@property
|
|
def schedule(self):
|
|
return self._schedule
|
|
|
|
def _set_current_step(self, epoch: int):
|
|
"""Sets current step number.
|
|
|
|
:param epoch: Step number to be set
|
|
:type epoch: int
|
|
"""
|
|
self._cur_step = epoch * self._steps_per_epoch
|
|
|
|
def _call_timer(self, action: str, item: str, *args, **kwargs) -> None:
|
|
"""Call timer funciton with a given timer name.
|
|
|
|
:param action: Function to be called on timer
|
|
:type action: str
|
|
:param item: Name of the timer
|
|
:type item: str
|
|
"""
|
|
|
|
if self._timer is not None:
|
|
getattr(self._timer, action)(item, *args, **kwargs)
|
|
|
|
def _reset_states(self) -> None:
|
|
"""Clear trainer states
|
|
"""
|
|
self.states = dict()
|
|
|
|
def _call_hooks(self, func, output=None):
|
|
"""Calls specific hooks in the current time point.
|
|
|
|
:param func: A string represents the time point
|
|
:param output: Output of the model after running a iteration or None in any other time points
|
|
:type func: str
|
|
:type output: optional
|
|
"""
|
|
# Only after iter hook will receive output
|
|
for hook in self.hooks:
|
|
if output is None:
|
|
getattr(hook, func)(self)
|
|
else:
|
|
getattr(hook, func)(self, *output)
|
|
|
|
@staticmethod
|
|
def _should_display_progress(display_progress: bool):
|
|
""" Only display progress on DP rank 0, TP rank 0 and PP last rank
|
|
"""
|
|
return display_progress and is_dp_rank_0() and is_tp_rank_0() and is_no_pp_or_last_stage()
|
|
|
|
def _train_epoch(self,
|
|
train_dataloader: DataLoader,
|
|
epoch: int = None,
|
|
display_progress: bool = False):
|
|
# set training state
|
|
self._engine.train()
|
|
data_iter = iter(train_dataloader)
|
|
progress = range(self._steps_per_epoch)
|
|
if display_progress:
|
|
if epoch is None:
|
|
progress = tqdm(progress, desc='[Train]')
|
|
else:
|
|
progress = tqdm(progress, desc=f'[Epoch {epoch} train]')
|
|
|
|
self._call_hooks('before_train_epoch')
|
|
self._call_timer(action='start', item='train-epoch')
|
|
for i in progress:
|
|
self._call_hooks('before_train_iter')
|
|
self._call_timer(action='start', item='train-step')
|
|
|
|
# run 1 training step
|
|
self.engine.zero_grad()
|
|
logits, label, loss = self.schedule.forward_backward_step(
|
|
self.engine, data_iter, forward_only=False, return_loss=True)
|
|
self.engine.step()
|
|
self._call_timer(action='stop', item='train-step', keep_in_history=True)
|
|
self._call_hooks('after_train_iter', output=(logits, label, loss))
|
|
|
|
self._cur_step += 1
|
|
|
|
# stop when max iter is reached
|
|
if self._exceed_max_step():
|
|
break
|
|
|
|
self._call_timer(action='stop', item='train-epoch', keep_in_history=True)
|
|
self._call_hooks('after_train_epoch')
|
|
self._call_timer(action='reset', item='train-step')
|
|
|
|
def _eval(self,
|
|
test_dataloader: DataLoader,
|
|
epoch: int = None,
|
|
display_progress: bool = False):
|
|
# switch engine status
|
|
self._engine.eval()
|
|
|
|
data_iter = iter(test_dataloader)
|
|
num_steps = len(test_dataloader)
|
|
|
|
self._call_hooks('before_test')
|
|
# prepare progress bar
|
|
progress = range(num_steps)
|
|
if display_progress:
|
|
desc = 'Evaluation'
|
|
if epoch is not None:
|
|
desc = '[Epoch %d val]' % epoch
|
|
progress = tqdm(progress, desc=desc)
|
|
|
|
self._call_hooks('before_test_epoch')
|
|
self._call_timer(action='start', item='test-epoch')
|
|
with torch.no_grad():
|
|
for _ in progress:
|
|
self._call_hooks('before_test_iter')
|
|
self._call_timer(action='start', item='test-step')
|
|
logits, label, loss = self.schedule.forward_backward_step(
|
|
self.engine, data_iter, forward_only=True, return_loss=True)
|
|
self._call_timer(action='stop', item='test-step', keep_in_history=True)
|
|
self._call_hooks('after_test_iter',
|
|
output=(logits, label, loss))
|
|
self._call_timer(action='stop', item='test-epoch', keep_in_history=True)
|
|
self._call_hooks('after_test_epoch')
|
|
self._call_hooks('after_test')
|
|
self._call_timer(action='reset', item='test-step')
|
|
self._call_timer(action='reset', item='test-epoch')
|
|
|
|
def _exceed_max_step(self):
|
|
return self._max_steps is not None and self._cur_step >= self._max_steps
|
|
|
|
def fit(self,
|
|
train_dataloader: DataLoader,
|
|
epochs: int,
|
|
max_steps: int = None,
|
|
test_dataloader: DataLoader = None,
|
|
test_interval: int = 1,
|
|
hooks: List[BaseHook] = None,
|
|
display_progress: bool = False,
|
|
):
|
|
"""Trains the model to fit training data.
|
|
|
|
:param train_dataloader: DataLoader in training
|
|
:param epochs: Maximum number of epoches
|
|
:param max_steps: Maximum number of running iterations
|
|
:param test_dataloader: DataLoader in testing
|
|
:param test_interval: Interval of testing
|
|
:param hooks_cfg: A list of hook configuration
|
|
:param display_progress: If True, the training progress will be printed
|
|
:type train_dataloader: DataLoader
|
|
:type epochs: int
|
|
:type max_steps: int
|
|
:type test_dataloader: DataLoader
|
|
:type test_interval: int
|
|
:type hooks_cfg: dict
|
|
:type display_progress: bool
|
|
:type gradient_accumulation: int
|
|
"""
|
|
|
|
# set epochs and steps, consider gradient accumulation
|
|
self._steps_per_epoch = len(train_dataloader)
|
|
self._max_steps = max_steps
|
|
self._max_epochs = epochs
|
|
|
|
# check if testing is required
|
|
should_test = False
|
|
if test_dataloader is not None:
|
|
should_test = True
|
|
|
|
display_progress = self._should_display_progress(display_progress)
|
|
|
|
# reset hooks
|
|
self._reset_states()
|
|
if hooks is not None:
|
|
assert isinstance(hooks, list), f'expected argument hooks be to list, but got {type(hooks)}'
|
|
else:
|
|
hooks = []
|
|
self.hooks = hooks
|
|
self.hooks.sort(key=lambda hook: hook.priority)
|
|
if self._verbose:
|
|
for hook in self.hooks:
|
|
self._logger.info(
|
|
f'Using {hook.__class__.__name__} for training, priority = {hook.priority}', ranks=[0])
|
|
self._logger.info("Lower value means higher priority for calling hook function", ranks=[0])
|
|
self._call_hooks('after_hook_is_attached')
|
|
|
|
# start train
|
|
self._engine.train()
|
|
self._call_hooks('before_train')
|
|
|
|
# recover step value if resuming training
|
|
last_epoch = self._cur_epoch
|
|
if self.cur_epoch != 0:
|
|
self._set_current_step(last_epoch)
|
|
|
|
for epoch in range(last_epoch, epochs):
|
|
# train for one epoch
|
|
self._train_epoch(
|
|
train_dataloader=train_dataloader,
|
|
epoch=epoch,
|
|
display_progress=display_progress
|
|
)
|
|
|
|
# start eval
|
|
if should_test and epoch % test_interval == 0:
|
|
self._eval(test_dataloader=test_dataloader,
|
|
display_progress=display_progress,
|
|
epoch=epoch,
|
|
)
|
|
|
|
self._cur_epoch += 1
|
|
|
|
# check for termination
|
|
if self._exceed_max_step():
|
|
self._logger.info(
|
|
f"Max number of steps {max_steps} has been reached, training is stopped automatically",
|
|
ranks=[0])
|
|
break
|
|
self._call_hooks('after_train')
|
|
self._call_timer('reset', 'train-epoch')
|
|
|
|
def evaluate(self,
|
|
test_dataloader: DataLoader,
|
|
hooks: List[BaseHook] = None,
|
|
display_progress: bool = False):
|
|
"""Evaluates the model with testing data.
|
|
|
|
:param test_dataloader: DataLoader in testing
|
|
:param display_progress: If True, the evaluation progress will be printed
|
|
:type test_dataloader: DataLoader
|
|
:type display_progress: bool, optional
|
|
"""
|
|
# set display
|
|
display_progress = self._should_display_progress(display_progress)
|
|
|
|
# reset hooks
|
|
self._reset_states()
|
|
if hooks is not None:
|
|
assert isinstance(hooks, list), f'expected argument hooks be to list, but got {type(hooks)}'
|
|
else:
|
|
hooks = []
|
|
self.hooks = hooks
|
|
self.hooks.sort(key=lambda hook: hook.priority)
|
|
if self._verbose:
|
|
for hook in self.hooks:
|
|
self._logger.info(
|
|
f'Using {hook.__class__.__name__} for training, priority = {hook.priority}', ranks=[0])
|
|
self._logger.info("Lower value means higher priority for calling hook function", ranks=[0])
|
|
self._call_hooks('after_hook_is_attached')
|
|
|
|
# eval
|
|
self._eval(test_dataloader=test_dataloader,
|
|
display_progress=display_progress,
|
|
)
|
|
|
|
def predict(self, data: Union[Tensor, List[Tensor]]):
|
|
"""Uses trained model to make a prediction for a tensor or a tensor list.
|
|
|
|
:param data: Data as the input
|
|
:type data: Union[Tensor, List[Tensor]
|
|
:return: The output of model as the prediction
|
|
:rtype: Tensor
|
|
"""
|
|
# predict without labels
|
|
if isinstance(data, (list, tuple)):
|
|
assert isinstance(data[0], Tensor)
|
|
else:
|
|
assert isinstance(data, Tensor)
|
|
self._engine.eval()
|
|
|
|
# prepare a list of (data, label) to make it iterable
|
|
# for compatibility with schedule
|
|
simple_dataloader = [(data, None)]
|
|
data_iter = iter(simple_dataloader)
|
|
output, _, _ = self.schedule.forward_backward_step(
|
|
self.engine, data_iter, forward_only=True, return_loss=False)
|
|
return output
|