ColossalAI/colossalai/context/process_group_initializer/initializer_2p5d.py

250 lines
10 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import math
import os
import torch.distributed as dist
from colossalai.constants import TESSERACT_DIM, TESSERACT_DEP
from colossalai.context import Config
from colossalai.registry import DIST_GROUP_INITIALIZER
from .process_group_initializer import ProcessGroupInitializer
from ..parallel_mode import ParallelMode
def _check_tesseract_env_var(tesseract_dim: int,
tesseract_dep: int):
# check environment variable for TESSERACT
env_tesseract_dim = os.environ.get(TESSERACT_DIM, None)
env_tesseract_dep = os.environ.get(TESSERACT_DEP, None)
if env_tesseract_dim and env_tesseract_dep:
assert int(env_tesseract_dim) == tesseract_dim, \
'TESSERACT_DIM has been set in the current environment and ' \
'does not match with the value passed to this initialized'
assert int(env_tesseract_dep) == tesseract_dep, \
'TESSERACT_DEP has been set in the current environment and ' \
'does not match with the value passed to this initialized'
else:
os.environ[TESSERACT_DIM] = str(tesseract_dim)
os.environ[TESSERACT_DEP] = str(tesseract_dep)
# i row j col k dep
class Initializer_2p5D_ROW(ProcessGroupInitializer):
'''2p5d tensor parallel initialization among rows.
'''
def __init__(self,
tesseract_dim: int,
tesseract_dep: int,
*args):
super(Initializer_2p5D_ROW, self).__init__(*args)
self.num_group = self.world_size // self.tensor_parallel_size
self.tesseract_dep = tesseract_dep
self.tesseract_dim = tesseract_dim
assert self.tensor_parallel_size == self.tesseract_dim ** 2 * self.tesseract_dep, \
"Tensor parallel size should be depth * dim ** 2 in 2.5D parallel"
def init_dist_group(self):
'''Initialize 2p5D tensor row parallel groups, and assign local_ranks and groups to each gpu.
:return: 2p5D tensor row parallelism's information
:rtype: tuple(local_rank, group_world_size, process_group, ranks_in_group, mode)
'''
local_rank = None
ranks_in_group = None
process_group = None
group_world_size = None
mode = ParallelMode.PARALLEL_2P5D_ROW
for h in range(self.num_group):
for j in range(self.tesseract_dim):
for k in range(self.tesseract_dep):
ranks = [h * self.tensor_parallel_size + i + self.tesseract_dim * (
j + self.tesseract_dim * k) for i in range(self.tesseract_dim)]
group = dist.new_group(ranks)
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
ranks_in_group = ranks
return local_rank, group_world_size, process_group, ranks_in_group, mode
class Initializer_2p5D_Col(ProcessGroupInitializer):
'''2p5d tensor parallel initialization among cols.
'''
def __init__(self,
tesseract_dim: int,
tesseract_dep: int,
*args):
super(Initializer_2p5D_Col, self).__init__(*args)
self.num_group = self.world_size // self.tensor_parallel_size
self.tesseract_dep = tesseract_dep
self.tesseract_dim = tesseract_dim
assert self.tensor_parallel_size == self.tesseract_dim ** 2 * self.tesseract_dep, \
"Tensor parallel size should be depth * dim ** 2 in 2.5D parallel"
def init_dist_group(self):
'''Initialize 2p5D tensor col parallel groups, and assign local_ranks and groups to each gpu.
:return: 2p5D tensor col parallelism's information
:rtype: tuple(local_rank, group_world_size, process_group, ranks_in_group, mode)
'''
local_rank = None
ranks_in_group = None
process_group = None
group_world_size = None
mode = ParallelMode.PARALLEL_2P5D_COL
for h in range(self.num_group):
for i in range(self.tesseract_dim):
for k in range(self.tesseract_dep):
ranks = [h * self.tensor_parallel_size + i + self.tesseract_dim * (
j + self.tesseract_dim * k) for j in range(self.tesseract_dim)]
group = dist.new_group(ranks)
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
ranks_in_group = ranks
return local_rank, group_world_size, process_group, ranks_in_group, mode
class Initializer_2p5D_Dep(ProcessGroupInitializer):
'''2p5D tensor parallel initialization among depths.
'''
def __init__(self,
tesseract_dim: int,
tesseract_dep: int,
*args):
super(Initializer_2p5D_Dep, self).__init__(*args)
self.num_group = self.world_size // self.tensor_parallel_size
self.tesseract_dep = tesseract_dep
self.tesseract_dim = tesseract_dim
assert self.tensor_parallel_size == self.tesseract_dim ** 2 * self.tesseract_dep, \
"Tensor parallel size should be depth * dim ** 2 in 2.5D parallel"
def init_dist_group(self):
'''Initialize 2p5D tensor depth parallel groups, and assign local_ranks and groups to each gpu.
:return: 2p5D tensor depth parallelism's information
:rtype: tuple(local_rank, group_world_size, process_group, ranks_in_group, mode)
'''
local_rank = None
ranks_in_group = None
process_group = None
group_world_size = None
mode = ParallelMode.PARALLEL_2P5D_DEP
for h in range(self.num_group):
for i in range(self.tesseract_dim):
for j in range(self.tesseract_dim):
ranks = [h * self.tensor_parallel_size + i + self.tesseract_dim * (
j + self.tesseract_dim * k) for k in range(self.tesseract_dep)]
group = dist.new_group(ranks)
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
ranks_in_group = ranks
return local_rank, group_world_size, process_group, ranks_in_group, mode
# i row j col k dep
class Initializer_2p5D_XZ(ProcessGroupInitializer):
'''2p5d tensor parallel initialization among cols times dep.
'''
def __init__(self,
tesseract_dim: int,
tesseract_dep: int,
*args):
super(Initializer_2p5D_XZ, self).__init__(*args)
self.num_group = self.world_size // self.tensor_parallel_size
self.tesseract_dep = tesseract_dep
self.tesseract_dim = tesseract_dim
assert self.tensor_parallel_size == self.tesseract_dim ** 2 * self.tesseract_dep, \
"Tensor parallel size should be depth * dim ** 2 in 2.5D parallel"
def init_dist_group(self):
'''Initialize 2p5D tensor colXdepth parallel groups, and assign local_ranks and groups to each gpu.
:return: 2p5D tensor colXdepth parallelism's information
:rtype: tuple(local_rank, group_world_size, process_group, ranks_in_group, mode)
'''
local_rank = None
ranks_in_group = None
process_group = None
group_world_size = None
mode = ParallelMode.PARALLEL_2P5D_XZ
for h in range(self.num_group):
for i in range(self.tesseract_dim):
ranks = [h * self.tensor_parallel_size + i + self.tesseract_dim * (
j + self.tesseract_dim * k) for k in range(self.tesseract_dep) for j in
range(self.tesseract_dim)]
group = dist.new_group(ranks)
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
ranks_in_group = ranks
return local_rank, group_world_size, process_group, ranks_in_group, mode
@DIST_GROUP_INITIALIZER.register_module
class Initializer_2p5D(ProcessGroupInitializer):
"""
Serve as the single entry point to Tesseract parallel initialization.
"""
def __init__(self,
rank: int,
world_size: int,
config: Config,
data_parallel_size: int,
pipeline_parlalel_size: int,
tensor_parallel_size: int,
depth: int
):
args = (rank, world_size, config, data_parallel_size, pipeline_parlalel_size, tensor_parallel_size)
super().__init__(*args)
self.num_group = self.world_size // self.tensor_parallel_size
self.tesseract_dim = int(math.sqrt(self.tensor_parallel_size / depth))
self.tesseract_dep = depth
assert self.tensor_parallel_size == self.tesseract_dim ** 2 * self.tesseract_dep, \
"2.5D tesseract dim should equal to (tensor parallel size / tesseract dep) ^ 0.5"
_check_tesseract_env_var(self.tesseract_dim, self.tesseract_dep)
self.col_initializer = Initializer_2p5D_Col(self.tesseract_dim, self.tesseract_dep, *args)
self.row_initializer = Initializer_2p5D_ROW(self.tesseract_dim, self.tesseract_dep, *args)
self.dep_initializer = Initializer_2p5D_Dep(self.tesseract_dim, self.tesseract_dep, *args)
self.xz_initializer = Initializer_2p5D_XZ(self.tesseract_dim, self.tesseract_dep, *args)
def init_dist_group(self):
'''Initialize 2p5D tensor row, col, depth, and colXdepth parallel groups, and assign local_ranks and groups to each gpu.
:return: Whole 2p5D tensor parallelism's information
:rtype: list of tuples (local_rank, group_world_size, process_group, ranks_in_group, mode)
'''
parallel_setting = []
parallel_setting.append(self.col_initializer.init_dist_group())
parallel_setting.append(self.row_initializer.init_dist_group())
parallel_setting.append(self.dep_initializer.init_dist_group())
parallel_setting.append(self.xz_initializer.init_dist_group())
return parallel_setting