ColossalAI/examples/tutorial/auto_parallel/auto_parallel_with_resnet.py

201 lines
7.3 KiB
Python

import argparse
import os
from pathlib import Path
import torch
from titans.utils import barrier_context
from torch.fx import GraphModule
from torchvision import transforms
from torchvision.datasets import CIFAR10
from torchvision.models import resnet50
from tqdm import tqdm
import colossalai
from colossalai.auto_parallel.passes.runtime_apply_pass import runtime_apply_pass
from colossalai.auto_parallel.passes.runtime_preparation_pass import runtime_preparation_pass
from colossalai.auto_parallel.tensor_shard.solver.cost_graph import CostGraph
from colossalai.auto_parallel.tensor_shard.solver.graph_analysis import GraphAnalyser
from colossalai.auto_parallel.tensor_shard.solver.options import DataloaderOption, SolverOptions
from colossalai.auto_parallel.tensor_shard.solver.solver import Solver
from colossalai.auto_parallel.tensor_shard.solver.strategies_constructor import StrategiesConstructor
from colossalai.core import global_context as gpc
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx.tracer.tracer import ColoTracer
from colossalai.logging import get_dist_logger
from colossalai.nn.lr_scheduler import CosineAnnealingLR
from colossalai.utils import get_dataloader
DATA_ROOT = Path(os.environ.get('DATA', '../data')).absolute()
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('-s', '--synthetic', action="store_true", help="use synthetic dataset instead of CIFAR10")
return parser.parse_args()
def synthesize_data():
img = torch.rand(gpc.config.BATCH_SIZE, 3, 32, 32)
label = torch.randint(low=0, high=10, size=(gpc.config.BATCH_SIZE,))
return img, label
def main():
args = parse_args()
colossalai.launch_from_torch(config='./config.py')
logger = get_dist_logger()
if not args.synthetic:
with barrier_context():
# build dataloaders
train_dataset = CIFAR10(root=DATA_ROOT,
download=True,
transform=transforms.Compose([
transforms.RandomCrop(size=32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.4914, 0.4822, 0.4465],
std=[0.2023, 0.1994, 0.2010]),
]))
test_dataset = CIFAR10(root=DATA_ROOT,
train=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010]),
]))
train_dataloader = get_dataloader(
dataset=train_dataset,
add_sampler=True,
shuffle=True,
batch_size=gpc.config.BATCH_SIZE,
pin_memory=True,
)
test_dataloader = get_dataloader(
dataset=test_dataset,
add_sampler=True,
batch_size=gpc.config.BATCH_SIZE,
pin_memory=True,
)
else:
train_dataloader, test_dataloader = None, None
# initialize device mesh
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
# trace the model with meta data
tracer = ColoTracer()
model = resnet50(num_classes=10).cuda()
input_sample = {'x': torch.rand([gpc.config.BATCH_SIZE * torch.distributed.get_world_size(), 3, 32, 32]).to('meta')}
graph = tracer.trace(root=model, meta_args=input_sample)
gm = GraphModule(model, graph, model.__class__.__name__)
gm.recompile()
# prepare info for solver
solver_options = SolverOptions(dataloader_option=DataloaderOption.DISTRIBUTED)
strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options)
strategies_constructor.build_strategies_and_cost()
cost_graph = CostGraph(strategies_constructor.leaf_strategies)
cost_graph.simplify_graph()
graph_analyser = GraphAnalyser(gm)
# solve the solution
solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser)
ret = solver.call_solver_serialized_args()
solution = list(ret[0])
if gpc.get_global_rank() == 0:
for index, node in enumerate(graph.nodes):
print(node.name, node.strategies_vector[solution[index]].name)
# process the graph for distributed training ability
gm, sharding_spec_dict, origin_spec_dict, comm_actions_dict = runtime_preparation_pass(gm, solution, device_mesh)
gm = runtime_apply_pass(gm)
gm.recompile()
# build criterion
criterion = torch.nn.CrossEntropyLoss()
# optimizer
optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
# lr_scheduler
lr_scheduler = CosineAnnealingLR(optimizer, total_steps=gpc.config.NUM_EPOCHS)
for epoch in range(gpc.config.NUM_EPOCHS):
gm.train()
if args.synthetic:
# if we use synthetic data
# we assume it only has 30 steps per epoch
num_steps = range(30)
else:
# we use the actual number of steps for training
num_steps = range(len(train_dataloader))
data_iter = iter(train_dataloader)
progress = tqdm(num_steps)
for _ in progress:
if args.synthetic:
# generate fake data
img, label = synthesize_data()
else:
# get the real data
img, label = next(data_iter)
img = img.cuda()
label = label.cuda()
optimizer.zero_grad()
output = gm(img, sharding_spec_dict, origin_spec_dict, comm_actions_dict)
train_loss = criterion(output, label)
train_loss.backward(train_loss)
optimizer.step()
lr_scheduler.step()
# run evaluation
gm.eval()
correct = 0
total = 0
if args.synthetic:
# if we use synthetic data
# we assume it only has 10 steps for evaluation
num_steps = range(30)
else:
# we use the actual number of steps for training
num_steps = range(len(test_dataloader))
data_iter = iter(test_dataloader)
progress = tqdm(num_steps)
for _ in progress:
if args.synthetic:
# generate fake data
img, label = synthesize_data()
else:
# get the real data
img, label = next(data_iter)
img = img.cuda()
label = label.cuda()
with torch.no_grad():
output = gm(img, sharding_spec_dict, origin_spec_dict, comm_actions_dict)
test_loss = criterion(output, label)
pred = torch.argmax(output, dim=-1)
correct += torch.sum(pred == label)
total += img.size(0)
logger.info(
f"Epoch {epoch} - train loss: {train_loss:.5}, test loss: {test_loss:.5}, acc: {correct / total:.5}, lr: {lr_scheduler.get_last_lr()[0]:.5g}",
ranks=[0])
if __name__ == '__main__':
main()