mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
281 lines
12 KiB
281 lines
12 KiB
from functools import partial
|
|
from typing import Callable, Dict, List
|
|
|
|
import torch.nn as nn
|
|
from torch import Tensor, nn
|
|
|
|
from colossalai.shardformer.layer import FusedLayerNorm, Linear1D_Col, Linear1D_Row, VocabParallelEmbedding1D
|
|
|
|
from .._utils import getattr_
|
|
from ..modeling.jit import get_jit_fused_dropout_add_func
|
|
from ..modeling.opt import OPTPipelineForwards, get_jit_fused_opt_decoder_layer_forward, get_opt_flash_attention_forward
|
|
from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
|
|
|
|
__all__ = [
|
|
'OPTPolicy', 'OPTModelPolicy', 'OPTForCausalLMPolicy', 'OPTForSequenceClassificationPolicy',
|
|
'OPTForQuestionAnsweringPolicy'
|
|
]
|
|
|
|
|
|
class OPTPolicy(Policy):
|
|
|
|
def config_sanity_check(self):
|
|
pass
|
|
|
|
def preprocess(self):
|
|
# reshape the embedding layer
|
|
r"""
|
|
Reshape the Embedding layer to make the embedding dimension divisible by world_size
|
|
"""
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
vocab_size = self.model.config.vocab_size
|
|
world_size = self.shard_config.tensor_parallel_size
|
|
if vocab_size % world_size != 0:
|
|
new_vocab_size = vocab_size + world_size - vocab_size % world_size
|
|
self.model.resize_token_embeddings(new_vocab_size)
|
|
return self.model
|
|
|
|
def module_policy(self):
|
|
from transformers.models.opt.modeling_opt import OPTAttention, OPTDecoder, OPTDecoderLayer
|
|
|
|
policy = {}
|
|
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
policy[OPTDecoder] = ModulePolicyDescription(sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="embed_tokens",
|
|
target_module=VocabParallelEmbedding1D,
|
|
)
|
|
])
|
|
policy[OPTDecoderLayer] = ModulePolicyDescription(sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="fc1",
|
|
target_module=Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="fc2",
|
|
target_module=Linear1D_Row,
|
|
)
|
|
])
|
|
|
|
policy[OPTAttention] = ModulePolicyDescription(attribute_replacement={
|
|
"embed_dim": self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
|
|
"num_heads": self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size
|
|
},
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="q_proj",
|
|
target_module=Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="k_proj",
|
|
target_module=Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="v_proj",
|
|
target_module=Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="out_proj",
|
|
target_module=Linear1D_Row,
|
|
),
|
|
])
|
|
|
|
# optimization configuration
|
|
if self.shard_config.enable_fused_normalization:
|
|
self.append_or_create_submodule_replacement(description=SubModuleReplacementDescription(
|
|
suffix="final_layer_norm", target_module=FusedLayerNorm, ignore_if_not_exist=True),
|
|
policy=policy,
|
|
target_key=OPTDecoder)
|
|
self.append_or_create_submodule_replacement(description=[
|
|
SubModuleReplacementDescription(suffix="self_attn_layer_norm",
|
|
target_module=FusedLayerNorm,
|
|
ignore_if_not_exist=True),
|
|
SubModuleReplacementDescription(suffix="final_layer_norm",
|
|
target_module=FusedLayerNorm,
|
|
ignore_if_not_exist=True)
|
|
],
|
|
policy=policy,
|
|
target_key=OPTDecoderLayer)
|
|
|
|
# use flash attention
|
|
if self.shard_config.enable_flash_attention:
|
|
policy[OPTAttention] = ModulePolicyDescription(method_replacement={
|
|
'forward': get_opt_flash_attention_forward(),
|
|
})
|
|
|
|
# use jit fused operator
|
|
if self.shard_config.enable_jit_fused:
|
|
policy[OPTDecoderLayer] = ModulePolicyDescription(method_replacement={
|
|
'forward': get_jit_fused_opt_decoder_layer_forward(),
|
|
'dropout_add': get_jit_fused_dropout_add_func(),
|
|
})
|
|
|
|
return policy
|
|
|
|
def postprocess(self):
|
|
return self.model
|
|
|
|
def get_held_layers(self) -> List[nn.Module]:
|
|
"""Get pipeline layers for current stage."""
|
|
assert self.pipeline_stage_manager is not None
|
|
|
|
if self.model.__class__.__name__ == 'OPTModel':
|
|
module = self.model.decoder
|
|
else:
|
|
module = self.model.model.decoder
|
|
stage_manager = self.pipeline_stage_manager
|
|
|
|
held_layers = []
|
|
layers_per_stage = self.distribute_layers(len(module.layers), stage_manager.num_stages)
|
|
if stage_manager.is_first_stage():
|
|
held_layers.append(module.embed_tokens)
|
|
held_layers.append(module.embed_positions)
|
|
held_layers.append(module.project_in)
|
|
start_idx, end_idx = self.get_stage_index(layers_per_stage, stage_manager.stage)
|
|
held_layers.extend(module.layers[start_idx:end_idx])
|
|
if stage_manager.is_last_stage():
|
|
held_layers.append(module.final_layer_norm)
|
|
held_layers.append(module.project_out)
|
|
return held_layers
|
|
|
|
def set_pipeline_forward(self, model_cls: nn.Module, new_forward: Callable, policy: Dict) -> None:
|
|
"""If under pipeline parallel setting, replacing the original forward method of huggingface
|
|
to customized forward method, and add this changing to policy."""
|
|
if self.pipeline_stage_manager:
|
|
stage_manager = self.pipeline_stage_manager
|
|
if self.model.__class__.__name__ == 'OPTModel':
|
|
module = self.model.decoder
|
|
else:
|
|
module = self.model.model.decoder
|
|
|
|
layers_per_stage = Policy.distribute_layers(len(module.layers), stage_manager.num_stages)
|
|
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
|
|
method_replacement = {'forward': partial(new_forward, stage_manager=stage_manager, stage_index=stage_index)}
|
|
self.append_or_create_method_replacement(description=method_replacement,
|
|
policy=policy,
|
|
target_key=model_cls)
|
|
|
|
|
|
class OPTModelPolicy(OPTPolicy):
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def module_policy(self):
|
|
from transformers.models.opt.modeling_opt import OPTModel
|
|
|
|
policy = super().module_policy()
|
|
if self.pipeline_stage_manager:
|
|
self.set_pipeline_forward(model_cls=OPTModel,
|
|
new_forward=OPTPipelineForwards.opt_model_forward,
|
|
policy=policy)
|
|
return policy
|
|
|
|
def get_held_layers(self) -> List[nn.Module]:
|
|
return super().get_held_layers()
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
"""No shared params in OPTModel."""
|
|
return []
|
|
|
|
|
|
class OPTForCausalLMPolicy(OPTPolicy):
|
|
|
|
def module_policy(self):
|
|
from transformers.models.opt.modeling_opt import OPTForCausalLM
|
|
|
|
policy = super().module_policy()
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
self.append_or_create_submodule_replacement(description=SubModuleReplacementDescription(
|
|
suffix="lm_head", target_module=Linear1D_Col, kwargs=dict(gather_output=True)),
|
|
policy=policy,
|
|
target_key=OPTForCausalLM)
|
|
if self.pipeline_stage_manager:
|
|
self.set_pipeline_forward(model_cls=OPTForCausalLM,
|
|
new_forward=OPTPipelineForwards.opt_for_causal_lm_forward,
|
|
policy=policy)
|
|
|
|
return policy
|
|
|
|
def get_held_layers(self) -> List[nn.Module]:
|
|
held_layers = super().get_held_layers()
|
|
if self.pipeline_stage_manager.is_last_stage():
|
|
held_layers.append(self.model.lm_head)
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
opt_model = self.model
|
|
if self.pipeline_stage_manager and self.pipeline_stage_manager.num_stages > 1:
|
|
num_stages = self.pipeline_stage_manager.num_stages
|
|
if id(opt_model.model.decoder.embed_tokens.weight) == id(opt_model.lm_head.weight):
|
|
return [{0: opt_model.model.decoder.embed_tokens.weight, num_stages - 1: opt_model.lm_head.weight}]
|
|
return []
|
|
|
|
def postprocess(self):
|
|
if self.shard_config.enable_tensor_parallelism and self.pipeline_stage_manager is None:
|
|
binding_map = {
|
|
'model.decoder.embed_tokens': 'lm_head',
|
|
}
|
|
|
|
for k, v in binding_map.items():
|
|
src_mod = getattr_(self.model, k)
|
|
dst_mod = getattr_(self.model, v)
|
|
dst_mod.weight = src_mod.weight
|
|
|
|
return self.model
|
|
|
|
|
|
class OPTForSequenceClassificationPolicy(OPTPolicy):
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def module_policy(self):
|
|
from transformers.models.opt.modeling_opt import OPTForSequenceClassification
|
|
|
|
policy = super().module_policy()
|
|
if self.pipeline_stage_manager:
|
|
self.set_pipeline_forward(model_cls=OPTForSequenceClassification,
|
|
new_forward=OPTPipelineForwards.opt_for_sequence_classification_forward,
|
|
policy=policy)
|
|
|
|
return policy
|
|
|
|
def get_held_layers(self) -> List[nn.Module]:
|
|
held_layers = super().get_held_layers()
|
|
if self.pipeline_stage_manager.is_last_stage():
|
|
held_layers.append(self.model.score)
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
"no shared params in OPTForSequenceClassification"
|
|
return []
|
|
|
|
|
|
class OPTForQuestionAnsweringPolicy(OPTPolicy):
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def module_policy(self):
|
|
from transformers.models.opt.modeling_opt import OPTForQuestionAnswering
|
|
|
|
policy = super().module_policy()
|
|
if self.pipeline_stage_manager:
|
|
self.set_pipeline_forward(model_cls=OPTForQuestionAnswering,
|
|
new_forward=OPTPipelineForwards.opt_for_question_answering_forward,
|
|
policy=policy)
|
|
|
|
return policy
|
|
|
|
def get_held_layers(self) -> List[nn.Module]:
|
|
held_layers = super().get_held_layers()
|
|
if self.pipeline_stage_manager.is_last_stage():
|
|
held_layers.append(self.model.qa_outputs)
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
"no shared params in OPTForSequenceClassification"
|
|
return []
|