You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/shardformer/policies/bert.py

572 lines
24 KiB

from functools import partial
from typing import Callable, Dict, List
import torch.nn as nn
from torch import Tensor
from torch.nn import Module
import colossalai.shardformer.layer as col_nn
from .._utils import getattr_, setattr_
from ..modeling.bert import (
BertPipelineForwards,
get_bert_flash_attention_forward,
get_jit_fused_bert_output_forward,
get_jit_fused_bert_self_output_forward,
)
from ..modeling.jit import get_jit_fused_dropout_add_func
from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
__all__ = [
'BertPolicy', 'BertModelPolicy', 'BertForPreTrainingPolicy', 'BertLMdHeadModelPolicy', 'BertForMaskedLMPolicy',
'BertForNextSentencePredictionPolicy', 'BertForSequenceClassificationPolicy', 'BertForTokenClassificationPolicy',
'BertForMultipleChoicePolicy', 'BertForQuestionAnsweringPolicy'
]
class BertPolicy(Policy):
def config_sanity_check(self):
pass
def preprocess(self):
# reshape the embedding layer
r"""
Reshape the Embedding layer to make the embedding dimension divisible by world_size
"""
# TODO:
if self.shard_config.enable_tensor_parallelism:
vocab_size = self.model.config.vocab_size
world_size = self.shard_config.tensor_parallel_size
if vocab_size % world_size != 0:
new_vocab_size = vocab_size + world_size - vocab_size % world_size
self.model.resize_token_embeddings(new_vocab_size)
return self.model
def module_policy(self):
from transformers.models.bert.modeling_bert import (
BertEmbeddings,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
policy = {}
if self.shard_config.enable_tensor_parallelism:
policy[BertLayer] = ModulePolicyDescription(attribute_replacement={
"attention.self.all_head_size":
self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
"crossattention.self.all_head_size":
self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
"attention.self.num_attention_heads":
self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size,
"crossattention.self.num_attention_heads":
self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size,
},
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="attention.self.query",
target_module=col_nn.Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="attention.self.key",
target_module=col_nn.Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="attention.self.value",
target_module=col_nn.Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="attention.self.dropout",
target_module=col_nn.DropoutForParallelInput,
),
SubModuleReplacementDescription(
suffix="attention.output.dense",
target_module=col_nn.Linear1D_Row,
),
SubModuleReplacementDescription(
suffix="attention.output.dropout",
target_module=col_nn.DropoutForParallelInput,
),
SubModuleReplacementDescription(
suffix="intermediate.dense",
target_module=col_nn.Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="output.dense",
target_module=col_nn.Linear1D_Row,
),
SubModuleReplacementDescription(
suffix="output.dropout",
target_module=col_nn.DropoutForParallelInput,
)
])
policy[BertEmbeddings] = ModulePolicyDescription(sub_module_replacement=[
SubModuleReplacementDescription(
suffix="word_embeddings",
target_module=col_nn.VocabParallelEmbedding1D,
),
SubModuleReplacementDescription(
suffix="dropout",
target_module=col_nn.DropoutForReplicatedInput,
)
])
# optimization configuration
if self.shard_config.enable_fused_normalization:
# Handle bert layer
self.append_or_create_submodule_replacement(description=[
SubModuleReplacementDescription(
suffix="attention.output.LayerNorm",
target_module=col_nn.FusedLayerNorm,
),
SubModuleReplacementDescription(
suffix="output.LayerNorm",
target_module=col_nn.FusedLayerNorm,
)
],
policy=policy,
target_key=BertLayer)
# handle embedding layer
self.append_or_create_submodule_replacement(
description=[SubModuleReplacementDescription(
suffix="LayerNorm",
target_module=col_nn.FusedLayerNorm,
)],
policy=policy,
target_key=BertEmbeddings)
# use flash attention
if self.shard_config.enable_flash_attention:
policy[BertSelfAttention] = ModulePolicyDescription(method_replacement={
'forward': get_bert_flash_attention_forward(),
})
# use jit operator
if self.shard_config.enable_jit_fused:
policy[BertSelfOutput] = ModulePolicyDescription(method_replacement={
'forward': get_jit_fused_bert_self_output_forward(),
'dropout_add': get_jit_fused_dropout_add_func(),
})
policy[BertOutput] = ModulePolicyDescription(method_replacement={
'forward': get_jit_fused_bert_output_forward(),
'dropout_add': get_jit_fused_dropout_add_func(),
})
return policy
def add_lm_head_policy(self, base_policy):
from transformers.models.bert.modeling_bert import BertLMPredictionHead
# optimize for tensor parallelism
if self.shard_config.enable_tensor_parallelism:
self.append_or_create_submodule_replacement(description=SubModuleReplacementDescription(
suffix="decoder", target_module=col_nn.Linear1D_Col, kwargs={"gather_output": True}),
policy=base_policy,
target_key=BertLMPredictionHead)
# optimize with fused normalization
if self.shard_config.enable_fused_normalization:
# Handle bert lm prediction head
self.append_or_create_submodule_replacement(description=SubModuleReplacementDescription(
suffix="transform.LayerNorm",
target_module=col_nn.FusedLayerNorm,
),
policy=base_policy,
target_key=BertLMPredictionHead)
return base_policy
def add_lm_prediction_policy(self, base_policy):
from transformers.models.bert.modeling_bert import BertLMPredictionHead
method_replacement = {
'_save_to_state_dict': col_nn.ParallelModule._save_to_state_dict,
'_load_from_state_dict': col_nn.ParallelModule._load_from_state_dict,
}
self.append_or_create_method_replacement(description=method_replacement,
policy=base_policy,
target_key=BertLMPredictionHead)
return base_policy
def postprocess(self):
return self.model
def set_pipeline_forward(self, model_cls: nn.Module, new_forward: Callable, policy: Dict) -> None:
"""If under pipeline parallel setting, replacing the original forward method of huggingface
to customized forward method, and add this changing to policy."""
if self.pipeline_stage_manager:
stage_manager = self.pipeline_stage_manager
if self.model.__class__.__name__ == "BertModel":
module = self.model
else:
module = self.model.bert
layers_per_stage = Policy.distribute_layers(len(module.encoder.layer), stage_manager.num_stages)
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
method_replacement = {'forward': partial(new_forward, stage_manager=stage_manager, stage_index=stage_index)}
self.append_or_create_method_replacement(description=method_replacement,
policy=policy,
target_key=model_cls)
return
def get_held_layers(self) -> List[Module]:
"""Get pipeline layers for current stage."""
assert self.pipeline_stage_manager is not None
if self.model.__class__.__name__ == 'BertModel':
module = self.model
else:
module = self.model.bert
stage_manager = self.pipeline_stage_manager
held_layers = []
layers_per_stage = self.distribute_layers(len(module.encoder.layer), stage_manager.num_stages)
if stage_manager.is_first_stage():
held_layers.append(module.embeddings)
start_idx, end_idx = self.get_stage_index(layers_per_stage, stage_manager.stage)
held_layers.extend(module.encoder.layer[start_idx:end_idx])
if stage_manager.is_last_stage():
held_layers.append(module.pooler)
return held_layers
# BertModel
class BertModelPolicy(BertPolicy):
def __init__(self) -> None:
super().__init__()
def module_policy(self):
policy = super().module_policy()
from transformers.models.bert.modeling_bert import BertModel
if self.pipeline_stage_manager:
self.set_pipeline_forward(model_cls=BertModel,
new_forward=BertPipelineForwards.bert_model_forward,
policy=policy)
return policy
def get_held_layers(self) -> List[Module]:
"""Get pipeline layers for current stage."""
held_layers = super().get_held_layers()
return held_layers
def get_shared_params(self) -> List[Dict[int, Tensor]]:
"""No shared params in bert model"""
return []
# BertForPreTraining
class BertForPreTrainingPolicy(BertPolicy):
def __init__(self) -> None:
super().__init__()
def module_policy(self):
policy = super().module_policy()
policy = self.add_lm_head_policy(policy)
policy = self.add_lm_prediction_policy(policy)
from transformers.models.bert.modeling_bert import BertForPreTraining
if self.pipeline_stage_manager:
self.set_pipeline_forward(model_cls=BertForPreTraining,
new_forward=BertPipelineForwards.bert_for_pretraining_forward,
policy=policy)
return policy
def get_held_layers(self) -> List[Module]:
"""Get pipeline layers for current stage"""
held_layers = super().get_held_layers()
stage_manager = self.pipeline_stage_manager
if stage_manager.is_last_stage():
held_layers.append(self.model.cls)
return held_layers
def get_shared_params(self) -> List[Dict[int, Tensor]]:
model = self.model
if self.pipeline_stage_manager and self.pipeline_stage_manager.num_stages > 1:
if id(model.bert.embeddings.word_embeddings.weight) == id(model.cls.predictions.decoder.weight):
# tie weights
return [{
0: model.bert.embeddings.word_embeddings.weight,
self.pipeline_stage_manager.num_stages - 1: model.cls.predictions.decoder.weight
}]
return []
# BertLMHeadModel
class BertLMHeadModelPolicy(BertPolicy):
def __init__(self) -> None:
super().__init__()
def module_policy(self):
policy = super().module_policy()
policy = self.add_lm_head_policy(policy)
policy = self.add_lm_prediction_policy(policy)
from transformers.models.bert.modeling_bert import BertLMHeadModel
if self.pipeline_stage_manager:
self.set_pipeline_forward(model_cls=BertLMHeadModel,
new_forward=BertPipelineForwards.bert_lm_head_model_forward,
policy=policy)
return policy
def get_held_layers(self) -> List[Module]:
"""
get pipeline layers for current stage
"""
held_layers = super().get_held_layers()
stage_manager = self.pipeline_stage_manager
if stage_manager.is_last_stage():
held_layers.append(self.model.cls)
return held_layers
def get_shared_params(self) -> List[Dict[int, Tensor]]:
bert_model = self.model.bert
if self.pipeline_stage_manager and self.pipeline_stage_manager.num_stages > 1:
if id(bert_model.embeddings.word_embeddings.weight) == id(self.model.cls.predictions.decoder.weight):
# tie weights
return [{
0: bert_model.embeddings.word_embeddings.weight,
self.pipeline_stage_manager.num_stages - 1: self.model.cls.predictions.decoder.weight
}]
return []
# BertForMaskedLM
class BertForMaskedLMPolicy(BertPolicy):
def __init__(self) -> None:
super().__init__()
def module_policy(self):
policy = super().module_policy()
policy = self.add_lm_head_policy(policy)
policy = self.add_lm_prediction_policy(policy)
from transformers.models.bert.modeling_bert import BertForMaskedLM
if self.pipeline_stage_manager:
self.set_pipeline_forward(model_cls=BertForMaskedLM,
new_forward=BertPipelineForwards.bert_for_masked_lm_forward,
policy=policy)
return policy
def get_held_layers(self) -> List[Module]:
"""
get pipeline layers for current stage
"""
held_layers = super().get_held_layers()
stage_manager = self.pipeline_stage_manager
if stage_manager.is_last_stage():
held_layers.append(self.model.cls)
return held_layers
def get_shared_params(self) -> List[Dict[int, Tensor]]:
bert_model = self.model.bert
if self.pipeline_stage_manager and self.pipeline_stage_manager.num_stages > 1:
if id(bert_model.embeddings.word_embeddings.weight) == id(self.model.cls.predictions.decoder.weight):
# tie weights
return [{
0: bert_model.embeddings.word_embeddings.weight,
self.pipeline_stage_manager.num_stages - 1: self.model.cls.predictions.decoder.weight
}]
return []
# BertForSequenceClassification
class BertForSequenceClassificationPolicy(BertPolicy):
def __init__(self) -> None:
super().__init__()
def module_policy(self):
from transformers.models.bert.modeling_bert import BertForSequenceClassification
policy = super().module_policy()
if self.shard_config.enable_tensor_parallelism:
addon_module = {
BertForSequenceClassification:
ModulePolicyDescription(sub_module_replacement=[
SubModuleReplacementDescription(
suffix="dropout",
target_module=col_nn.DropoutForParallelInput,
)
])
}
policy.update(addon_module)
if self.pipeline_stage_manager:
self.set_pipeline_forward(model_cls=BertForSequenceClassification,
new_forward=BertPipelineForwards.bert_for_sequence_classification_forward,
policy=policy)
return policy
def get_held_layers(self) -> List[Module]:
"""
get pipeline layers for current stage
"""
held_layers = super().get_held_layers()
stage_manager = self.pipeline_stage_manager
if stage_manager.is_last_stage():
held_layers.append(self.model.dropout)
held_layers.append(self.model.classifier)
return held_layers
def get_shared_params(self) -> List[Dict[int, Tensor]]:
# no shared params for sequence classification model
return []
# BertForTokenClassification
class BertForTokenClassificationPolicy(BertPolicy):
def __init__(self) -> None:
super().__init__()
def module_policy(self):
from transformers.models.bert.modeling_bert import BertForTokenClassification
policy = super().module_policy()
if self.shard_config.enable_tensor_parallelism:
addon_module = {
BertForTokenClassification:
ModulePolicyDescription(sub_module_replacement=[
SubModuleReplacementDescription(
suffix="dropout",
target_module=col_nn.DropoutForParallelInput,
)
])
}
policy.update(addon_module)
if self.pipeline_stage_manager:
self.set_pipeline_forward(model_cls=BertForTokenClassification,
new_forward=BertPipelineForwards.bert_for_token_classification_forward,
policy=policy)
return policy
def get_held_layers(self) -> List[Module]:
"""
get pipeline layers for current stage
"""
held_layers = super().get_held_layers()
stage_manager = self.pipeline_stage_manager
if stage_manager.is_last_stage():
held_layers.append(self.model.dropout)
held_layers.append(self.model.classifier)
return held_layers
def get_shared_params(self) -> List[Dict[int, Tensor]]:
# no shared params for sequence classification model
return []
# BertForNextSentencePrediction
class BertForNextSentencePredictionPolicy(BertPolicy):
def __init__(self) -> None:
super().__init__()
def module_policy(self):
policy = super().module_policy()
from transformers.models.bert.modeling_bert import BertForNextSentencePrediction
if self.pipeline_stage_manager:
self.set_pipeline_forward(model_cls=BertForNextSentencePrediction,
new_forward=BertPipelineForwards.bert_for_next_sentence_prediction_forward,
policy=policy)
return policy
def get_held_layers(self) -> List[Module]:
"""
get pipeline layers for current stage
"""
held_layers = super().get_held_layers()
stage_manager = self.pipeline_stage_manager
if stage_manager.is_last_stage():
held_layers.append(self.model.cls)
return held_layers
def get_shared_params(self) -> List[Dict[int, Tensor]]:
# no shared params for sequence classification model
return []
# BertForMultipleChoice
class BertForMultipleChoicePolicy(BertPolicy):
def __init__(self) -> None:
super().__init__()
def module_policy(self):
from transformers.models.bert.modeling_bert import BertForMultipleChoice
policy = super().module_policy()
if self.shard_config.enable_tensor_parallelism:
addon_module = {
BertForMultipleChoice:
ModulePolicyDescription(sub_module_replacement=[
SubModuleReplacementDescription(
suffix="dropout",
target_module=col_nn.DropoutForParallelInput,
)
])
}
policy.update(addon_module)
if self.pipeline_stage_manager:
self.set_pipeline_forward(model_cls=BertForMultipleChoice,
new_forward=BertPipelineForwards.bert_for_multiple_choice_forward,
policy=policy)
return policy
def get_held_layers(self) -> List[Module]:
"""
get pipeline layers for current stage
"""
held_layers = super().get_held_layers()
stage_manager = self.pipeline_stage_manager
if stage_manager.is_last_stage():
held_layers.append(self.model.dropout)
held_layers.append(self.model.classifier)
return held_layers
def get_shared_params(self) -> List[Dict[int, Tensor]]:
# no shared params for sequence classification model
return []
class BertForQuestionAnsweringPolicy(BertPolicy):
def __init__(self) -> None:
super().__init__()
def module_policy(self):
from transformers.models.bert.modeling_bert import BertForQuestionAnswering
policy = super().module_policy()
if self.pipeline_stage_manager:
self.set_pipeline_forward(model_cls=BertForQuestionAnswering,
new_forward=BertPipelineForwards.bert_for_question_answering_forward,
policy=policy)
return policy
def get_held_layers(self) -> List[Module]:
"""
get pipeline layers for current stage
"""
held_layers = super().get_held_layers()
stage_manager = self.pipeline_stage_manager
if stage_manager.is_last_stage():
held_layers.append(self.model.qa_outputs)
return held_layers
def get_shared_params(self) -> List[Dict[int, Tensor]]:
# no shared params for sequence classification model
return []