ColossalAI/colossalai/kernel/cuda_native/mha/flash_attn_2.py

69 lines
2.4 KiB
Python

import warnings
from typing import Optional
import torch
def is_ampere_or_better_gpu():
if torch.cuda.is_available():
device = torch.device("cuda")
properties = torch.cuda.get_device_properties(device)
if properties.major >= 8: # Ampere GPUs or newer
return True
return False
# "Check Ampere GPUs or newer"
HAS_FLASH_ATTN = False
if is_ampere_or_better_gpu():
HAS_FLASH_ATTN = True
else:
warnings.warn('FlashAttention only supports Ampere GPUs or newer.')
HAS_FLASH_ATTN = False
try:
from flash_attn.flash_attn_interface import flash_attn_func, flash_attn_varlen_func
HAS_FLASH_ATTN = True
except ImportError:
warnings.warn('please install flash_attn from https://github.com/HazyResearch/flash-attention')
HAS_FLASH_ATTN = False
if HAS_FLASH_ATTN:
from einops import rearrange
from .utils import SeqLenInfo
def flash_attention(q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
seq_len_info_q: SeqLenInfo,
seq_len_info_kv: SeqLenInfo,
bias: Optional[torch.Tensor] = None,
dropout_p: float = 0.,
scale: float = None,
causal: bool = False,
padded: bool = False):
"""
Arguments:
q: (batch, q_seqlen, nheads, headdim)
k: (batch, kv_seqlen, nheads, headdim)
v: (batch, kv_seqlen, nheads, headdim)
batch_size: int.
seq_len: int.
dropout_p: float. Dropout probability.
sm_scale: float. The scaling of QK^T before applying softmax.
Default to 1 / sqrt(headdim).
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
Return:
attn_out: (batch, q_seqlen, nheads, headdim).
"""
if padded:
if seq_len_info_kv == None:
seq_len_info_kv = seq_len_info_q
attn_out = flash_attn_varlen_func(q, k, v, seq_len_info_q.cu_seqlens, seq_len_info_kv.cu_seqlens,
seq_len_info_q.max_seqlen, seq_len_info_kv.max_seqlen, dropout_p, scale,
causal)
else:
attn_out = flash_attn_func(q, k, v, dropout_p=dropout_p, softmax_scale=scale, causal=causal)
return attn_out