mirror of https://github.com/hpcaitech/ColossalAI
354 lines
13 KiB
Plaintext
354 lines
13 KiB
Plaintext
// modified from
|
|
// https://github.com/NVIDIA/apex/blob/master/csrc/multi_tensor_lamb.cu
|
|
#include <ATen/ATen.h>
|
|
#include <ATen/AccumulateType.h>
|
|
#include <ATen/cuda/CUDAContext.h>
|
|
#include <ATen/cuda/Exceptions.h>
|
|
// Another possibility:
|
|
// #include <torch/all.h>
|
|
|
|
#include <assert.h>
|
|
|
|
#include "multi_tensor_apply.cuh"
|
|
#include "type_shim.h"
|
|
|
|
#define BLOCK_SIZE 512
|
|
#define ILP 4
|
|
|
|
template <typename T>
|
|
__device__ __forceinline__ bool is_aligned(T *p) {
|
|
return ((uint64_t)p) % (ILP * sizeof(T)) == 0;
|
|
}
|
|
|
|
template <typename T>
|
|
__device__ __forceinline__ void load_store(T *dst, T *src, int dst_offset,
|
|
int src_offset) {
|
|
typedef
|
|
typename std::aligned_storage<ILP * sizeof(T), ILP * alignof(T)>::type LT;
|
|
((LT *)dst)[dst_offset] = ((LT *)src)[src_offset];
|
|
}
|
|
|
|
typedef enum {
|
|
MOMENT_MODE_0 = 0, // L2 regularization mode
|
|
MOMENT_MODE_1 = 1 // Decoupled weight decay mode
|
|
} adamMode_t;
|
|
|
|
std::tuple<at::Tensor, at::Tensor> multi_tensor_l2norm_cuda(
|
|
int chunk_size, at::Tensor noop_flag,
|
|
std::vector<std::vector<at::Tensor>> tensor_lists,
|
|
at::optional<bool> per_tensor_python);
|
|
|
|
using MATH_T = float;
|
|
|
|
template <typename T>
|
|
struct LAMBStage1Functor {
|
|
__device__ __forceinline__ void operator()(
|
|
int chunk_size, volatile int *noop_gmem, TensorListMetadata<4> &tl,
|
|
const float beta1, const float beta2, const float beta3,
|
|
const float beta1_correction, const float beta2_correction,
|
|
const float epsilon, adamMode_t mode, const float decay,
|
|
const float *global_grad_norm, const float max_global_grad_norm) {
|
|
// I'd like this kernel to propagate infs/nans.
|
|
// if(*noop_gmem == 1)
|
|
// return;
|
|
|
|
int tensor_loc = tl.block_to_tensor[blockIdx.x];
|
|
int chunk_idx = tl.block_to_chunk[blockIdx.x];
|
|
int n = tl.sizes[tensor_loc];
|
|
|
|
float clipped_global_grad_norm =
|
|
(*global_grad_norm) > max_global_grad_norm
|
|
? (*global_grad_norm) / max_global_grad_norm
|
|
: 1.0f;
|
|
|
|
T *g = (T *)tl.addresses[0][tensor_loc];
|
|
g += chunk_idx * chunk_size;
|
|
|
|
T *p = (T *)tl.addresses[1][tensor_loc];
|
|
p += chunk_idx * chunk_size;
|
|
|
|
T *m = (T *)tl.addresses[2][tensor_loc];
|
|
m += chunk_idx * chunk_size;
|
|
|
|
T *v = (T *)tl.addresses[3][tensor_loc];
|
|
v += chunk_idx * chunk_size;
|
|
|
|
n -= chunk_idx * chunk_size;
|
|
|
|
MATH_T r_g[ILP];
|
|
MATH_T r_p[ILP];
|
|
MATH_T r_m[ILP];
|
|
MATH_T r_v[ILP];
|
|
// to make things simple, we put aligned case in a different code path
|
|
if (n % ILP == 0 && chunk_size % ILP == 0 && is_aligned(g) &&
|
|
is_aligned(p) && is_aligned(m) && is_aligned(v)) {
|
|
T l_g[ILP];
|
|
T l_p[ILP];
|
|
T l_m[ILP];
|
|
T l_v[ILP];
|
|
for (int i_start = threadIdx.x;
|
|
i_start * ILP < n && i_start * ILP < chunk_size;
|
|
i_start += blockDim.x) {
|
|
// load
|
|
load_store(l_g, g, 0, i_start);
|
|
if (decay != 0) load_store(l_p, p, 0, i_start);
|
|
load_store(l_m, m, 0, i_start);
|
|
load_store(l_v, v, 0, i_start);
|
|
// unpack
|
|
#pragma unroll
|
|
for (int ii = 0; ii < ILP; ii++) {
|
|
r_g[ii] = l_g[ii];
|
|
if (decay == 0) {
|
|
r_p[ii] = MATH_T(0);
|
|
} else {
|
|
r_p[ii] = l_p[ii];
|
|
}
|
|
r_m[ii] = l_m[ii];
|
|
r_v[ii] = l_v[ii];
|
|
}
|
|
#pragma unroll
|
|
for (int ii = 0; ii < ILP; ii++) {
|
|
if (mode == MOMENT_MODE_0) {
|
|
MATH_T scaled_grad = r_g[ii] / clipped_global_grad_norm;
|
|
// L2 on scaled grad
|
|
scaled_grad = scaled_grad + decay * r_p[ii];
|
|
r_m[ii] = r_m[ii] * beta1 + beta3 * scaled_grad;
|
|
r_v[ii] = r_v[ii] * beta2 + (1 - beta2) * scaled_grad * scaled_grad;
|
|
MATH_T next_m_unbiased = r_m[ii] / beta1_correction;
|
|
MATH_T next_v_unbiased = r_v[ii] / beta2_correction;
|
|
MATH_T denom = sqrtf(next_v_unbiased) + epsilon;
|
|
r_p[ii] = next_m_unbiased / denom;
|
|
} else {
|
|
MATH_T scaled_grad = r_g[ii] / clipped_global_grad_norm;
|
|
r_m[ii] = r_m[ii] * beta1 + beta3 * scaled_grad;
|
|
r_v[ii] = r_v[ii] * beta2 + (1 - beta2) * scaled_grad * scaled_grad;
|
|
MATH_T next_m_unbiased = r_m[ii] / beta1_correction;
|
|
MATH_T next_v_unbiased = r_v[ii] / beta2_correction;
|
|
MATH_T denom = sqrtf(next_v_unbiased) + epsilon;
|
|
r_p[ii] = (next_m_unbiased / denom) + (decay * r_p[ii]);
|
|
}
|
|
}
|
|
#pragma unroll
|
|
for (int ii = 0; ii < ILP; ii++) {
|
|
l_p[ii] = r_p[ii];
|
|
l_m[ii] = r_m[ii];
|
|
l_v[ii] = r_v[ii];
|
|
}
|
|
// store
|
|
load_store(g, l_p, i_start, 0);
|
|
load_store(m, l_m, i_start, 0);
|
|
load_store(v, l_v, i_start, 0);
|
|
}
|
|
} else {
|
|
// see note in multi_tensor_scale_kernel.cu
|
|
for (int i_start = 0; i_start < n && i_start < chunk_size;
|
|
i_start += blockDim.x * ILP) {
|
|
MATH_T r_g[ILP];
|
|
MATH_T r_p[ILP];
|
|
MATH_T r_m[ILP];
|
|
MATH_T r_v[ILP];
|
|
#pragma unroll
|
|
for (int ii = 0; ii < ILP; ii++) {
|
|
int i = i_start + threadIdx.x + ii * blockDim.x;
|
|
if (i < n && i < chunk_size) {
|
|
r_g[ii] = g[i];
|
|
// special ?optimization? for lamb stage 1
|
|
if (decay == 0) {
|
|
r_p[ii] = MATH_T(0);
|
|
} else {
|
|
r_p[ii] = p[i];
|
|
}
|
|
r_m[ii] = m[i];
|
|
r_v[ii] = v[i];
|
|
} else {
|
|
r_g[ii] = MATH_T(0);
|
|
r_p[ii] = MATH_T(0);
|
|
r_m[ii] = MATH_T(0);
|
|
r_v[ii] = MATH_T(0);
|
|
}
|
|
}
|
|
#pragma unroll
|
|
for (int ii = 0; ii < ILP; ii++) {
|
|
if (mode == MOMENT_MODE_0) {
|
|
MATH_T scaled_grad = r_g[ii] / clipped_global_grad_norm;
|
|
// L2 on scaled grad
|
|
scaled_grad = scaled_grad + decay * r_p[ii];
|
|
r_m[ii] = r_m[ii] * beta1 + beta3 * scaled_grad;
|
|
r_v[ii] = r_v[ii] * beta2 + (1 - beta2) * scaled_grad * scaled_grad;
|
|
MATH_T next_m_unbiased = r_m[ii] / beta1_correction;
|
|
MATH_T next_v_unbiased = r_v[ii] / beta2_correction;
|
|
MATH_T denom = sqrtf(next_v_unbiased) + epsilon;
|
|
r_p[ii] = next_m_unbiased / denom;
|
|
} else {
|
|
MATH_T scaled_grad = r_g[ii] / clipped_global_grad_norm;
|
|
r_m[ii] = r_m[ii] * beta1 + beta3 * scaled_grad;
|
|
r_v[ii] = r_v[ii] * beta2 + (1 - beta2) * scaled_grad * scaled_grad;
|
|
MATH_T next_m_unbiased = r_m[ii] / beta1_correction;
|
|
MATH_T next_v_unbiased = r_v[ii] / beta2_correction;
|
|
MATH_T denom = sqrtf(next_v_unbiased) + epsilon;
|
|
r_p[ii] = (next_m_unbiased / denom) + (decay * r_p[ii]);
|
|
}
|
|
}
|
|
#pragma unroll
|
|
for (int ii = 0; ii < ILP; ii++) {
|
|
int i = i_start + threadIdx.x + ii * blockDim.x;
|
|
if (i < n && i < chunk_size) {
|
|
g[i] = r_p[ii];
|
|
m[i] = r_m[ii];
|
|
v[i] = r_v[ii];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
// Step 2 reads in 'update' value and per-tensor param_norm and update_norm.
|
|
// It computes new parameter value.
|
|
template <typename T>
|
|
struct LAMBStage2Functor {
|
|
__device__ __forceinline__ void operator()(
|
|
int chunk_size, volatile int *noop_gmem, TensorListMetadata<2> &tl,
|
|
const float *per_tensor_param_norm, const float *per_tensor_update_norm,
|
|
const float learning_rate, const float decay, bool use_nvlamb) {
|
|
// I'd like this kernel to propagate infs/nans.
|
|
// if(*noop_gmem == 1)
|
|
// return;
|
|
|
|
int tensor_loc = tl.block_to_tensor[blockIdx.x];
|
|
int tensor_num = tl.start_tensor_this_launch + tensor_loc;
|
|
int chunk_idx = tl.block_to_chunk[blockIdx.x];
|
|
int n = tl.sizes[tensor_loc];
|
|
|
|
MATH_T ratio = learning_rate;
|
|
// nvlamb: apply adaptive learning rate to all parameters
|
|
// otherwise, only apply to those with non-zero weight decay
|
|
if (use_nvlamb || (decay != 0.0)) {
|
|
float param_norm = per_tensor_param_norm[tensor_num];
|
|
float update_norm = per_tensor_update_norm[tensor_num];
|
|
ratio = (update_norm != 0.0f && param_norm != 0.0f)
|
|
? learning_rate * (param_norm / update_norm)
|
|
: learning_rate;
|
|
}
|
|
|
|
T *update = (T *)tl.addresses[0][tensor_loc];
|
|
update += chunk_idx * chunk_size;
|
|
|
|
T *p = (T *)tl.addresses[1][tensor_loc];
|
|
p += chunk_idx * chunk_size;
|
|
|
|
n -= chunk_idx * chunk_size;
|
|
|
|
// to make things simple, we put aligned case in a different code path
|
|
if (n % ILP == 0 && chunk_size % ILP == 0 && is_aligned(p) &&
|
|
is_aligned(update)) {
|
|
T r_p[ILP];
|
|
T r_update[ILP];
|
|
for (int i_start = threadIdx.x;
|
|
i_start * ILP < n && i_start * ILP < chunk_size;
|
|
i_start += blockDim.x) {
|
|
// load
|
|
load_store(r_p, p, 0, i_start);
|
|
load_store(r_update, update, 0, i_start);
|
|
#pragma unroll
|
|
for (int ii = 0; ii < ILP; ii++) {
|
|
r_p[ii] = static_cast<MATH_T>(r_p[ii]) -
|
|
(ratio * static_cast<MATH_T>(r_update[ii]));
|
|
}
|
|
load_store(p, r_p, i_start, 0);
|
|
}
|
|
} else {
|
|
for (int i_start = 0; i_start < n && i_start < chunk_size;
|
|
i_start += blockDim.x * ILP) {
|
|
MATH_T r_p[ILP];
|
|
MATH_T r_update[ILP];
|
|
#pragma unroll
|
|
for (int ii = 0; ii < ILP; ii++) {
|
|
int i = i_start + threadIdx.x + ii * blockDim.x;
|
|
if (i < n && i < chunk_size) {
|
|
r_p[ii] = p[i];
|
|
r_update[ii] = update[i];
|
|
}
|
|
}
|
|
#pragma unroll
|
|
for (int ii = 0; ii < ILP; ii++) {
|
|
r_p[ii] = r_p[ii] - (ratio * r_update[ii]);
|
|
}
|
|
#pragma unroll
|
|
for (int ii = 0; ii < ILP; ii++) {
|
|
int i = i_start + threadIdx.x + ii * blockDim.x;
|
|
if (i < n && i < chunk_size) {
|
|
p[i] = r_p[ii];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
void multi_tensor_lamb_cuda(int chunk_size, at::Tensor noop_flag,
|
|
std::vector<std::vector<at::Tensor>> tensor_lists,
|
|
const float lr, const float beta1,
|
|
const float beta2, const float epsilon,
|
|
const int step, const int bias_correction,
|
|
const float weight_decay, const int grad_averaging,
|
|
const int mode, at::Tensor global_grad_norm,
|
|
const float max_grad_norm,
|
|
at::optional<bool> use_nvlamb_python) {
|
|
using namespace at;
|
|
// Master weight and 32bit momentum(potentially changing) is not handled by
|
|
// this So we assume every tensor are all in the same type
|
|
|
|
bool use_nvlamb =
|
|
use_nvlamb_python.has_value() ? use_nvlamb_python.value() : false;
|
|
|
|
// Handle bias correction mode
|
|
float bias_correction1 = 1.0f, bias_correction2 = 1.0f;
|
|
if (bias_correction == 1) {
|
|
bias_correction1 = 1 - std::pow(beta1, step);
|
|
bias_correction2 = 1 - std::pow(beta2, step);
|
|
}
|
|
|
|
// Handle grad averaging mode
|
|
float beta3 = 1.0f;
|
|
if (grad_averaging == 1) beta3 = 1 - beta1;
|
|
|
|
std::vector<std::vector<at::Tensor>> grad_list(tensor_lists.begin(),
|
|
tensor_lists.begin() + 1);
|
|
std::vector<std::vector<at::Tensor>> param_list(tensor_lists.begin() + 1,
|
|
tensor_lists.begin() + 2);
|
|
|
|
// Compute per tensor param norm
|
|
auto param_norm_tuple =
|
|
multi_tensor_l2norm_cuda(chunk_size, noop_flag, param_list, true);
|
|
|
|
// We now in-place modify grad to store update before compute its norm
|
|
// Generally this is not a issue since people modify grad in step() method all
|
|
// the time We can also grab list of empty tensor to avoid this, but I'd like
|
|
// to save space/cpu code
|
|
DISPATCH_FLOAT_AND_HALF(
|
|
tensor_lists[0][0].scalar_type(), 0, "lamb_stage_1",
|
|
multi_tensor_apply<4>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
|
|
LAMBStage1Functor<scalar_t_0>(), beta1, beta2,
|
|
beta3, // 1-beta1 or 1 depends on averaging mode
|
|
bias_correction1, bias_correction2, epsilon,
|
|
(adamMode_t)mode, weight_decay,
|
|
global_grad_norm.DATA_PTR<float>(), max_grad_norm);)
|
|
|
|
// Compute update norms
|
|
auto update_norm_tuple =
|
|
multi_tensor_l2norm_cuda(chunk_size, noop_flag, grad_list, true);
|
|
|
|
std::vector<std::vector<at::Tensor>> grad_param_list(
|
|
tensor_lists.begin(), tensor_lists.begin() + 2);
|
|
|
|
DISPATCH_FLOAT_AND_HALF(
|
|
tensor_lists[0][0].scalar_type(), 0, "lamb_stage_2",
|
|
multi_tensor_apply<2>(BLOCK_SIZE, chunk_size, noop_flag, grad_param_list,
|
|
LAMBStage2Functor<scalar_t_0>(),
|
|
std::get<1>(param_norm_tuple).DATA_PTR<float>(),
|
|
std::get<1>(update_norm_tuple).DATA_PTR<float>(),
|
|
lr, weight_decay, use_nvlamb);)
|
|
|
|
AT_CUDA_CHECK(cudaGetLastError());
|
|
} |