ColossalAI/applications/ColossalMoE/tests/test_moe_layer.py

32 lines
1.1 KiB
Python

import copy
import torch
from colossal_moe.models.mixtral_layer import MixtralSparseMLP
from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock
class Config:
def __init__(self, hidden_size, intermediate_size, num_local_experts, num_experts_per_tok, hidden_act):
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_local_experts = num_local_experts
self.num_experts_per_tok = num_experts_per_tok
self.hidden_act = hidden_act
def test_moe_layer():
config = Config(hidden_size=4, intermediate_size=8, num_local_experts=32, num_experts_per_tok=2, hidden_act="silu")
mistral_moe = MixtralSparseMoeBlock(config).cuda()
colossal_moe = MixtralSparseMLP.from_native_module(copy.deepcopy(mistral_moe)).cuda()
data = torch.randn(2, 8, 4).cuda()
mistral_output = mistral_moe(data)[0]
colossal_output = colossal_moe(data)[0]
assert torch.allclose(
mistral_output, colossal_output
), f"mistral_output: {mistral_output}\ncolossal_output: {colossal_output}"
if __name__ == "__main__":
test_moe_layer()