ColossalAI/colossalai/booster/plugin/torch_ddp_plugin.py

179 lines
6.4 KiB
Python

from typing import Callable, Iterator, List, Optional, Tuple
import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
from torch.utils.data import DataLoader
from colossalai.checkpoint_io import CheckpointIO, GeneralCheckpointIO
from colossalai.cluster import DistCoordinator
from colossalai.interface import ModelWrapper, OptimizerWrapper
from .dp_plugin_base import DPPluginBase
__all__ = ["TorchDDPPlugin"]
class TorchDDPCheckpointIO(GeneralCheckpointIO):
def __init__(self) -> None:
super().__init__()
self.coordinator = DistCoordinator()
def load_unsharded_model(self, model: nn.Module, checkpoint: str, strict: bool = True):
"""
Load model from checkpoint with automatic unwrapping.
"""
# the model should be unwrapped in self.load_model via ModelWrapper.unwrap
return super().load_unsharded_model(model, checkpoint, strict=strict)
def save_unsharded_model(self, model: nn.Module, checkpoint: str, gather_dtensor: bool, use_safetensors: bool):
"""
Save model to checkpoint but only on master process.
"""
if self.coordinator.is_master():
super().save_unsharded_model(model, checkpoint, gather_dtensor, use_safetensors)
def save_unsharded_optimizer(self, optimizer: Optimizer, checkpoint: str, gather_dtensor: bool):
"""
Save optimizer to checkpoint but only on master process.
"""
if self.coordinator.is_master():
super().save_unsharded_optimizer(optimizer, checkpoint, gather_dtensor)
def save_lr_scheduler(self, lr_scheduler: LRScheduler, checkpoint: str):
"""
Save model to checkpoint but only on master process.
"""
if self.coordinator.is_master():
super().save_lr_scheduler(lr_scheduler, checkpoint)
def save_sharded_model(
self,
model: nn.Module,
checkpoint_path: str,
gather_dtensor: bool = True,
prefix: Optional[str] = None,
max_shard_size: int = 1024,
use_safetensors: bool = False,
):
"""
Save model to checkpoint but only on master process.
"""
if self.coordinator.is_master():
super().save_sharded_model(model, checkpoint_path, gather_dtensor, prefix, max_shard_size, use_safetensors)
def save_sharded_optimizer(
self,
optimizer: Optimizer,
checkpoint: str,
gather_dtensor: bool = True,
prefix: Optional[str] = None,
size_per_shard: int = 1024,
):
"""
Save optimizer to checkpoint but only on master process.
"""
if self.coordinator.is_master():
super().save_sharded_optimizer(optimizer, checkpoint, gather_dtensor, prefix, size_per_shard)
class TorchDDPModel(ModelWrapper):
def __init__(self, module: nn.Module, *args, **kwargs) -> None:
super().__init__(module)
self.module = DDP(module, *args, **kwargs)
def unwrap(self):
return self.module.module
class TorchDDPPlugin(DPPluginBase):
"""
Plugin for PyTorch DDP.
Example:
>>> from colossalai.booster import Booster
>>> from colossalai.booster.plugin import TorchDDPPlugin
>>>
>>> model, train_dataset, optimizer, criterion = ...
>>> plugin = TorchDDPPlugin()
>>> train_dataloader = plugin.prepare_dataloader(train_dataset, batch_size=8)
>>> booster = Booster(plugin=plugin)
>>> model, optimizer, train_dataloader, criterion = booster.boost(model, optimizer, train_dataloader, criterion)
Args:
broadcast_buffers (bool, optional): Whether to broadcast buffers in the beginning of training. Defaults to True.
bucket_cap_mb (int, optional): The bucket size in MB. Defaults to 25.
find_unused_parameters (bool, optional): Whether to find unused parameters. Defaults to False.
check_reduction (bool, optional): Whether to check reduction. Defaults to False.
gradient_as_bucket_view (bool, optional): Whether to use gradient as bucket view. Defaults to False.
static_graph (bool, optional): Whether to use static graph. Defaults to False.
"""
def __init__(
self,
broadcast_buffers: bool = True,
bucket_cap_mb: int = 25,
find_unused_parameters: bool = False,
check_reduction: bool = False,
gradient_as_bucket_view: bool = False,
static_graph: bool = False,
) -> None:
super().__init__()
self.ddp_kwargs = dict(
broadcast_buffers=broadcast_buffers,
bucket_cap_mb=bucket_cap_mb,
find_unused_parameters=find_unused_parameters,
check_reduction=check_reduction,
gradient_as_bucket_view=gradient_as_bucket_view,
static_graph=static_graph,
)
def support_no_sync(self) -> bool:
return True
def control_precision(self) -> bool:
return False
def supported_precisions(self) -> List[str]:
return ["fp16", "fp16_apex", "bf16", "fp8"]
def control_device(self) -> bool:
return True
def supported_devices(self) -> List[str]:
return ["cuda"]
def configure(
self,
model: nn.Module,
optimizer: Optional[Optimizer] = None,
criterion: Optional[Callable] = None,
dataloader: Optional[DataLoader] = None,
lr_scheduler: Optional[LRScheduler] = None,
) -> Tuple[nn.Module, OptimizerWrapper, Callable, DataLoader, LRScheduler]:
# cast model to cuda
model = model.cuda()
# convert model to sync bn
model = nn.SyncBatchNorm.convert_sync_batchnorm(model, None)
# wrap the model with PyTorch DDP
model = TorchDDPModel(model, **self.ddp_kwargs)
if optimizer is not None and not isinstance(optimizer, OptimizerWrapper):
optimizer = OptimizerWrapper(optimizer)
return model, optimizer, criterion, dataloader, lr_scheduler
def control_checkpoint_io(self) -> bool:
return True
def get_checkpoint_io(self) -> CheckpointIO:
return TorchDDPCheckpointIO()
def no_sync(self, model: nn.Module, optimizer: OptimizerWrapper) -> Iterator[None]:
assert isinstance(model, TorchDDPModel), "Model is not boosted by TorchDDPPlugin."
return model.module.no_sync()