mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
52 lines
1.8 KiB
52 lines
1.8 KiB
from copy import deepcopy |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from colossalai.gemini.memory_tracer.runtime_mem_tracer import RuntimeMemTracer |
|
from colossalai.utils.model.colo_init_context import ColoInitContext |
|
from tests.components_to_test import run_fwd_bwd |
|
from tests.components_to_test.registry import non_distributed_component_funcs |
|
|
|
|
|
def test_runtime_mem_tracer(): |
|
test_models = ['gpt2', 'bert', 'simple_net', 'repeated_computed_layers', 'nested_model', 'albert'] |
|
|
|
for model_name in test_models: |
|
get_components_func = non_distributed_component_funcs.get_callable(model_name) |
|
model_builder, train_dataloader, _, _, criterion = get_components_func() |
|
|
|
with ColoInitContext(device='cpu'): |
|
model = model_builder(checkpoint=False) |
|
|
|
model_bk = deepcopy(model) |
|
runtime_mem_tracer = RuntimeMemTracer(model) |
|
|
|
for i, (data, label) in enumerate(train_dataloader): |
|
if i > 1: |
|
break |
|
data = data.cuda() |
|
label = label.cuda() |
|
|
|
run_fwd_bwd(runtime_mem_tracer, data, label, criterion, optimizer=runtime_mem_tracer) |
|
|
|
for p1, p2 in zip(model_bk.parameters(), model.parameters()): |
|
torch.allclose(p1.to(torch.half), p2) |
|
|
|
non_model_data_list = runtime_mem_tracer._memstats.non_model_data_list('cuda') |
|
cuda_non_model_data_list = np.array(non_model_data_list) / 1024**2 |
|
print("cuda_non_model_data_list", len(cuda_non_model_data_list)) |
|
print(non_model_data_list) |
|
|
|
cnt1 = 0 |
|
for p in runtime_mem_tracer.parameters_in_runtime_order(): |
|
cnt1 += 1 |
|
cnt2 = 0 |
|
for p in model.parameters(): |
|
cnt2 += 1 |
|
assert cnt2 == cnt1, f'visited param number {cnt1} vs real param number {cnt2}' |
|
del model |
|
|
|
|
|
if __name__ == '__main__': |
|
test_runtime_mem_tracer()
|
|
|