ColossalAI/examples/language/gpt/titans/model/gpt1d.py

350 lines
14 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import math
import torch
from torch import Tensor
from torch import nn as nn
from colossalai import kernel
from colossalai import nn as col_nn
from colossalai.core import global_context as gpc
from colossalai.kernel.cuda_native.scaled_softmax import AttnMaskType
from colossalai.nn.layer import Linear1D_Col, Linear1D_Row
from colossalai.nn.layer.base_layer import ParallelLayer
from colossalai.nn.layer.utils import ACT2FN, divide
from colossalai.utils import checkpoint
from colossalai.utils.activation_checkpoint import checkpoint
__all__ = [
'GPTMLP1D', 'GPTSelfAttention1D', 'GPTTransformerLayer1D', 'FusedGPTSelfAttention1D', 'FusedGPTTransformerLayer1D'
]
class GPTMLP1D(ParallelLayer):
def __init__(
self,
in_features: int,
mlp_ratio: int,
act_func: str = 'gelu',
dropout_prob: float = 0.,
dtype=None,
checkpoint: bool = False,
skip_bias_add: bool = False,
):
super().__init__()
self.in_features = in_features
self.mlp_ratio = mlp_ratio
self.checkpoint = checkpoint
self.skip_bias_add = skip_bias_add
self.act = ACT2FN[act_func]
skip_dense_1_add_bias = False
# Project to mlp_ratio * h.
self.dense_1 = Linear1D_Col(
self.in_features,
int(self.mlp_ratio * self.in_features),
dtype=dtype,
gather_output=False,
skip_bias_add=skip_dense_1_add_bias,
)
# Project back to h.
self.dense_2 = Linear1D_Row(
int(self.mlp_ratio * self.in_features),
self.in_features,
dtype=dtype,
parallel_input=True,
)
self.dropout = col_nn.Dropout(dropout_prob)
def _forward(self, hidden_states: Tensor) -> Tensor:
intermediate_output = self.dense_1(hidden_states)
intermediate_output = self.act(intermediate_output)
output = self.dense_2(intermediate_output)
output = self.dropout(output)
return output
def _checkpoint_forward(self, hidden_states: Tensor) -> Tensor:
return checkpoint(self._forward, False, hidden_states)
def forward(self, hidden_states: Tensor) -> Tensor:
if self.checkpoint:
return self._checkpoint_forward(hidden_states)
else:
return self._forward(hidden_states)
class GenericGPTSelfAttention1D(ParallelLayer):
def __init__(
self,
hidden_size: int,
num_attention_heads: int,
attention_dropout_prob: float,
hidden_dropout_prob: float,
dtype=None,
checkpoint: bool = False,
max_position_embeddings=1024,
):
super().__init__()
self.hidden_size = hidden_size
self.attention_head_size = divide(hidden_size, num_attention_heads)
self.num_attention_heads_per_partition = divide(num_attention_heads, gpc.tensor_parallel_size)
self.hidden_size_per_partition = divide(hidden_size, gpc.tensor_parallel_size)
self.checkpoint = checkpoint
self.query_key_value = Linear1D_Col(
hidden_size,
3 * hidden_size,
dtype=dtype,
)
self.attention_dropout = col_nn.Dropout(attention_dropout_prob)
self.dense = Linear1D_Row(
hidden_size,
hidden_size,
dtype=dtype,
parallel_input=True,
)
self.dropout = col_nn.Dropout(hidden_dropout_prob)
def softmax_forward(self, attention_scores, attention_mask, query_layer, key_layer):
raise NotImplementedError
def _forward(self, hidden_states: Tensor, attention_mask=None) -> Tensor:
query_key_value = self.query_key_value(hidden_states)
new_qkv_shape = query_key_value.shape[:-1] + \
(self.num_attention_heads_per_partition, 3 * self.attention_head_size)
query_key_value = query_key_value.view(new_qkv_shape)
query_key_value = query_key_value.permute((0, 2, 1, 3))
query_layer, key_layer, value_layer = torch.chunk(query_key_value, 3, dim=-1)
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = self.softmax_forward(attention_scores, attention_mask, query_layer, key_layer)
attention_scores = attention_scores.type(value_layer.dtype)
attention_probs = self.attention_dropout(attention_scores)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.transpose(1, 2)
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
context_layer = context_layer.reshape(new_context_layer_shape)
output = self.dense(context_layer)
output = self.dropout(output)
return output
def _checkpoint_forward(self, hidden_states: Tensor, attention_mask=None) -> Tensor:
return checkpoint(self._forward, False, hidden_states, attention_mask)
def forward(self, hidden_states: Tensor, attention_mask=None) -> Tensor:
if self.checkpoint:
return self._checkpoint_forward(hidden_states, attention_mask)
else:
return self._forward(hidden_states, attention_mask)
class GPTSelfAttention1D(GenericGPTSelfAttention1D):
def __init__(self,
hidden_size: int,
num_attention_heads: int,
attention_dropout_prob: float,
hidden_dropout_prob: float,
dtype=None,
checkpoint: bool = False,
max_position_embeddings=1024):
super().__init__(hidden_size,
num_attention_heads,
attention_dropout_prob,
hidden_dropout_prob,
dtype=dtype,
checkpoint=checkpoint,
max_position_embeddings=max_position_embeddings)
self.softmax = nn.Softmax(dim=-1)
max_positions = max_position_embeddings
self.register_buffer(
"bias",
torch.tril(torch.ones((max_positions, max_positions),
dtype=torch.uint8)).view(1, 1, max_positions, max_positions),
)
self.register_buffer("masked_bias", torch.tensor(-1e4))
def softmax_forward(self, attention_scores, attention_mask, query_layer, key_layer):
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# causal mask
query_length, key_length = query_layer.size(-2), key_layer.size(-2)
causal_mask = self.bias[:, :, key_length - query_length:key_length, :key_length].bool()
attention_scores = torch.where(causal_mask, attention_scores, self.masked_bias.to(attention_scores))
if attention_mask is not None:
# Apply the attention mask
attention_scores = attention_scores + attention_mask
attention_scores = self.softmax(attention_scores)
return attention_scores
class FusedGPTSelfAttention1D(GenericGPTSelfAttention1D):
def __init__(self,
hidden_size: int,
num_attention_heads: int,
attention_dropout_prob: float,
hidden_dropout_prob: float,
dtype=None,
checkpoint: bool = False,
max_position_embeddings=1024):
super().__init__(hidden_size,
num_attention_heads,
attention_dropout_prob,
hidden_dropout_prob,
dtype=dtype,
checkpoint=checkpoint,
max_position_embeddings=max_position_embeddings)
self.softmax = kernel.FusedScaleMaskSoftmax(input_in_fp16=True,
input_in_bf16=False,
attn_mask_type=AttnMaskType.causal,
scaled_masked_softmax_fusion=True,
mask_func=None,
softmax_in_fp32=True,
scale=math.sqrt(self.attention_head_size))
def softmax_forward(self, attention_scores, attention_mask, query_layer, key_layer):
return self.softmax(attention_scores, attention_mask)
class GenericGPTTransformerLayer1D(ParallelLayer):
def __init__(self,
hidden_size: int,
num_attention_heads: int,
act_func: str = 'gelu',
mlp_ratio: float = 4.0,
attention_dropout_prob: float = 0.,
hidden_dropout_prob: float = 0.,
dtype=None,
checkpoint: bool = False,
max_position_embeddings: int = 1024,
layer_norm_epsilon: float = 1e-5,
apply_post_layer_norm: bool = False,
attention=None,
layer_norm=None):
super().__init__()
self.checkpoint = checkpoint
self.dtype = dtype
self.norm1 = layer_norm(hidden_size, eps=layer_norm_epsilon)
self.apply_post_layer_norm = apply_post_layer_norm
self.attention = attention(
hidden_size=hidden_size,
num_attention_heads=num_attention_heads,
attention_dropout_prob=attention_dropout_prob,
hidden_dropout_prob=hidden_dropout_prob,
dtype=dtype,
max_position_embeddings=max_position_embeddings,
checkpoint=False,
)
self.norm2 = layer_norm(hidden_size, eps=layer_norm_epsilon)
self.mlp = GPTMLP1D(
in_features=hidden_size,
dropout_prob=hidden_dropout_prob,
act_func=act_func,
mlp_ratio=mlp_ratio,
dtype=dtype,
checkpoint=False,
)
def _forward(self, hidden_states, attention_mask) -> Tensor:
if not self.apply_post_layer_norm:
residual = hidden_states
hidden_states = self.norm1(hidden_states)
if self.apply_post_layer_norm:
residual = hidden_states
attention_output = self.attention(hidden_states, attention_mask)
hidden_states = residual + attention_output
if not self.apply_post_layer_norm:
residual = hidden_states
hidden_states = self.norm2(hidden_states)
if self.apply_post_layer_norm:
residual = hidden_states
feed_forward_hidden_states = self.mlp(hidden_states)
hidden_states = residual + feed_forward_hidden_states
output = (hidden_states, attention_mask)
return output
def forward(self, hidden_states, attention_mask):
if self.checkpoint:
return checkpoint(self._forward, False, hidden_states, attention_mask)
else:
return self._forward(hidden_states, attention_mask)
class GPTTransformerLayer1D(GenericGPTTransformerLayer1D):
def __init__(self,
hidden_size: int,
num_attention_heads: int,
act_func: str = 'gelu',
mlp_ratio: float = 4,
attention_dropout_prob: float = 0,
hidden_dropout_prob: float = 0,
dtype=None,
checkpoint: bool = False,
max_position_embeddings: int = 1024,
layer_norm_epsilon: float = 0.00001,
apply_post_layer_norm: bool = False):
attention = GPTSelfAttention1D
layer_norm = nn.LayerNorm
super().__init__(hidden_size,
num_attention_heads,
act_func=act_func,
mlp_ratio=mlp_ratio,
attention_dropout_prob=attention_dropout_prob,
hidden_dropout_prob=hidden_dropout_prob,
dtype=dtype,
checkpoint=checkpoint,
max_position_embeddings=max_position_embeddings,
layer_norm_epsilon=layer_norm_epsilon,
apply_post_layer_norm=apply_post_layer_norm,
attention=attention,
layer_norm=layer_norm)
class FusedGPTTransformerLayer1D(GenericGPTTransformerLayer1D):
def __init__(self,
hidden_size: int,
num_attention_heads: int,
act_func: str = 'gelu',
mlp_ratio: float = 4,
attention_dropout_prob: float = 0,
hidden_dropout_prob: float = 0,
dtype=None,
checkpoint: bool = False,
max_position_embeddings: int = 1024,
layer_norm_epsilon: float = 0.00001,
apply_post_layer_norm: bool = False):
attention = FusedGPTSelfAttention1D
layer_norm = kernel.LayerNorm
super().__init__(hidden_size,
num_attention_heads,
act_func=act_func,
mlp_ratio=mlp_ratio,
attention_dropout_prob=attention_dropout_prob,
hidden_dropout_prob=hidden_dropout_prob,
dtype=dtype,
checkpoint=checkpoint,
max_position_embeddings=max_position_embeddings,
layer_norm_epsilon=layer_norm_epsilon,
apply_post_layer_norm=apply_post_layer_norm,
attention=attention,
layer_norm=layer_norm)