mirror of https://github.com/hpcaitech/ColossalAI
61 lines
2.2 KiB
Python
61 lines
2.2 KiB
Python
from dataclasses import dataclass
|
|
from typing import Optional
|
|
|
|
import torch.distributed as dist
|
|
from torch.distributed import ProcessGroup
|
|
|
|
from colossalai.pipeline.stage_manager import PipelineStageManager
|
|
|
|
__all__ = ['ShardConfig']
|
|
|
|
|
|
@dataclass
|
|
class ShardConfig:
|
|
r"""
|
|
The config for sharding the huggingface model
|
|
|
|
Args:
|
|
tensor_parallel_process_group (Optional[ProcessGroup]): The process group for tensor parallelism, defaults to None, which is the global process group.
|
|
pipeline_stage_manager (Optional[PipelineStageManager]): The pipeline stage manager, defaults to None, which means no pipeline.
|
|
enable_tensor_parallelism (bool): Whether to turn on tensor parallelism, default is True.
|
|
enable_fused_normalization (bool): Whether to use fused layernorm, default is False.
|
|
enable_all_optimization (bool): Whether to turn on all optimization, default is False.
|
|
"""
|
|
tensor_parallel_process_group: Optional[ProcessGroup] = None
|
|
pipeline_stage_manager: Optional[PipelineStageManager] = None
|
|
enable_tensor_parallelism: bool = True
|
|
enable_fused_normalization: bool = False
|
|
enable_all_optimization: bool = False
|
|
enable_flash_attention: bool = False
|
|
enable_jit_fused: bool = False
|
|
|
|
# TODO: add support for tensor parallel
|
|
# pipeline_parallel_size: int
|
|
# data_parallel_size: int
|
|
# tensor_parallel_mode: Literal['1d', '2d', '2.5d', '3d']
|
|
# inference_only: bool = True
|
|
# gather_output: bool = True
|
|
|
|
@property
|
|
def tensor_parallel_size(self):
|
|
return self._tensor_parallel_size
|
|
|
|
def __post_init__(self):
|
|
if not self.enable_tensor_parallelism:
|
|
self._tensor_parallel_size = 1
|
|
else:
|
|
# get the parallel size
|
|
self._tensor_parallel_size = dist.get_world_size(self.tensor_parallel_process_group)
|
|
# turn on all optimization if all_optimization is set to True
|
|
if self.enable_all_optimization:
|
|
self._turn_on_all_optimization()
|
|
|
|
def _turn_on_all_optimization(self):
|
|
"""
|
|
Turn on all optimization.
|
|
"""
|
|
# you can add all the optimization flag here
|
|
self.enable_fused_normalization = True
|
|
self.enable_flash_attention = True
|
|
self.enable_jit_fused = True
|