mirror of https://github.com/hpcaitech/ColossalAI
85 lines
2.8 KiB
Python
85 lines
2.8 KiB
Python
from abc import abstractmethod
|
|
from enum import Enum
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
from torch import Tensor
|
|
|
|
from colossalai.amp.naive_amp.grad_scaler import DynamicGradScaler
|
|
from colossalai.utils import get_current_device
|
|
|
|
from .base import MixedPrecisionMixin
|
|
|
|
|
|
class OptimState(Enum):
|
|
SCALED = 0
|
|
UNSCALED = 1
|
|
|
|
|
|
class FP16MixedPrecisionMixin(MixedPrecisionMixin):
|
|
dtype = torch.float16
|
|
|
|
def __init__(self,
|
|
initial_scale: float = 2**16,
|
|
min_scale: float = 1,
|
|
growth_factor: float = 2,
|
|
backoff_factor: float = 0.5,
|
|
growth_interval: int = 1000,
|
|
hysteresis: int = 2,
|
|
max_scale: float = 2**32) -> None:
|
|
super().__init__()
|
|
self.grad_scaler = DynamicGradScaler(initial_scale=initial_scale,
|
|
min_scale=min_scale,
|
|
growth_factor=growth_factor,
|
|
backoff_factor=backoff_factor,
|
|
growth_interval=growth_interval,
|
|
hysteresis=hysteresis,
|
|
max_scale=max_scale)
|
|
self.optim_state = OptimState.UNSCALED
|
|
self.found_overflow = torch.zeros(1, dtype=torch.float, device=get_current_device())
|
|
|
|
@property
|
|
def loss_scale(self) -> float:
|
|
return self.grad_scaler.scale.item()
|
|
|
|
@abstractmethod
|
|
def check_local_overflow(self) -> bool:
|
|
"""Check whether there is overflow in the local process. This method should be implemented by subclasses.
|
|
|
|
Returns:
|
|
bool: Whether there is overflow in the local process.
|
|
"""
|
|
pass
|
|
|
|
def check_overflow(self) -> bool:
|
|
# clear previous overflow record
|
|
self.found_overflow.fill_(0.0)
|
|
if self.check_local_overflow():
|
|
self.found_overflow.fill_(1.0)
|
|
dist.all_reduce(self.found_overflow, op=dist.ReduceOp.MAX)
|
|
return self.found_overflow.item() > 0
|
|
|
|
def pre_backward(self, loss: Tensor) -> Tensor:
|
|
loss = self.loss_scale * loss
|
|
self.optim_state = OptimState.SCALED
|
|
return loss
|
|
|
|
def pre_backward_by_grad(self, tensor: Tensor, grad: Tensor) -> Tensor:
|
|
self.optim_state = OptimState.SCALED
|
|
return grad
|
|
|
|
def should_skip_step(self) -> bool:
|
|
found_inf = self.check_overflow()
|
|
self.grad_scaler.update(found_inf)
|
|
if found_inf:
|
|
self.optim_state = OptimState.UNSCALED
|
|
return found_inf
|
|
|
|
def pre_zero_grad(self) -> None:
|
|
pass
|
|
|
|
def get_grad_div_scale(self) -> float:
|
|
assert self.optim_state == OptimState.SCALED, 'grads should be scaled before clipping'
|
|
self.optim_state = OptimState.UNSCALED
|
|
return self.loss_scale
|