ColossalAI/applications/Chat/coati/kernels/opt_attn.py

88 lines
4.3 KiB
Python

from typing import Optional, Tuple
import torch
import xformers.ops as xops
from torch import Tensor
from transformers.models.opt.modeling_opt import OPTAttention
# This is modified from https://github.com/huggingface/transformers/blob/main/src/transformers/models/opt/modeling_opt.py
class XOPTAttention(OPTAttention):
# def _shape(self, tensor: Tensor, seq_len: int, bsz: int):
# return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).contiguous()
def forward(
self,
hidden_states: Tensor,
key_value_states: Optional[Tensor] = None,
past_key_value: Optional[Tensor] = None,
attention_mask: Optional[Tensor] = None,
layer_head_mask: Optional[Tensor] = None,
output_attentions: bool = False,
) -> Tuple[Tensor, Optional[Tensor], Optional[Tuple[Tensor]]]:
if not self.training:
return super().forward(hidden_states, key_value_states, past_key_value, attention_mask, layer_head_mask,
output_attentions)
"""Input shape: Batch x Time x Channel"""
assert layer_head_mask is None, 'Xformers attention does not support layer_head_mask'
assert not output_attentions, 'Xformers attention does not support output_attentions'
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states)
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
query_states = self._shape(query_states, tgt_len, bsz).transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
attn_output = xops.memory_efficient_attention(query_states,
key_states,
value_states,
attn_bias=xops.LowerTriangularMask(),
p=self.dropout if self.training else 0.0,
scale=self.scaling)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
attn_weights_reshaped = None
return attn_output, attn_weights_reshaped, past_key_value