ColossalAI/tests/test_utils/test_materialize_arbitary_l...

56 lines
1.6 KiB
Python

import torch
from colossalai.utils.model.lazy_init_context import LazyInitContext
from torchvision.models import resnet34
import random
import numpy as np
MANUAL_SEED = 0
random.seed(MANUAL_SEED)
np.random.seed(MANUAL_SEED)
torch.manual_seed(MANUAL_SEED)
class MLP(torch.nn.Module):
def __init__(self, dim: int = 4):
super().__init__()
intermediate_dim = dim * 4
self.dense_1 = torch.nn.Linear(dim, intermediate_dim)
self.activation = torch.nn.GELU()
self.dense_2 = torch.nn.Linear(intermediate_dim, dim)
self.dropout = torch.nn.Dropout(0.1)
def forward(self, x):
x = self.dense_1(x)
x = self.activation(x)
x = self.dense_2(x)
x = self.dropout(x)
return x
def test_lazy_init():
cpu_rng_state = torch.get_rng_state()
origin_model = MLP()
origin_param_dict = dict(origin_model.named_parameters())
torch.set_rng_state(cpu_rng_state)
ctx = LazyInitContext()
with ctx:
model = MLP()
for param in model.parameters():
assert param.is_meta
for buffer in model.buffers():
assert buffer.is_meta
for module in model.children():
ctx.lazy_init_parameters(module)
for param in module.parameters():
assert not param.is_meta
for buffer in module.buffers():
assert not buffer.is_meta
param_dict = dict(model.named_parameters())
for key in origin_param_dict.keys():
assert origin_param_dict[key].data.equal(param_dict[key].data)
if __name__ == '__main__':
test_lazy_init()