ColossalAI/colossalai/shardformer/policies/bert.py

171 lines
5.5 KiB
Python

from typing import Any, Callable, Dict, List, Tuple, Type
import torch.nn as nn
from transformers.models.bert.modeling_bert import BertEmbeddings, BertLayer, BertLMPredictionHead
import colossalai.shardformer.layer.layers as col_nn
from .basepolicy import Argument, Col_Layer, Layer, Policy, Row_Layer
class BertPolicy(Policy):
@staticmethod
def argument_policy(config, world_size: int) -> Dict[nn.Module, Argument]:
return {
BertLayer:
Argument(
attr_dict={
# 1. shard hidden size
"attention.self.all_head_size": config.hidden_size // world_size,
"crossattention.self.all_head_size": config.hidden_size // world_size,
# 2. shard number of heads
"attention.self.num_attention_heads": config.num_attention_heads // world_size,
"crossattention.self.num_attention_heads": config.num_attention_heads // world_size,
},
param_funcs=[BertPolicy.attn_in, BertPolicy.attn_out, BertPolicy.mlp_in, BertPolicy.mlp_out]),
BertEmbeddings:
Argument(
attr_dict={
# 1. shard vocab size
# "word_embeddings.num_embeddings": config.vocab_size // world_size,
# 2. add the size of the sliced embedding layer excluding the last slice
"word_embeddings.dim_size": (config.vocab_size + world_size - 1) // world_size,
},
param_funcs=[
BertPolicy.embedding,
]),
BertLMPredictionHead:
Argument(
attr_dict={
# 1. shard vocab size
# "word_embeddings.num_embeddings": config.vocab_size // world_size,
# 2. add the size of the sliced embedding layer excluding the last slice
},
param_funcs=[
BertPolicy.unembedding,
])
}
@staticmethod
def binding_policy() -> Dict:
return {
"bert.embeddings.word_embeddings.weight": "cls.predictions.decoder.weight",
}
@staticmethod
def attn_in() -> List:
return [
Col_Layer(
weight="attention.self.query.weight",
bias="attention.self.query.bias",
replace_layer=col_nn.Linear1D_Col,
),
Col_Layer(
weight="attention.self.key.weight",
bias="attention.self.key.bias",
replace_layer=col_nn.Linear1D_Col,
),
Col_Layer(
weight="attention.self.value.weight",
bias="attention.self.value.bias",
replace_layer=col_nn.Linear1D_Col,
),
Col_Layer(
weight="crossattention.self.query.weight",
bias="crossattention.self.query.bias",
replace_layer=col_nn.Linear1D_Col,
ignore=True,
),
Col_Layer(
weight="crossattention.self.key.weight",
bias="crossattention.self.key.bias",
replace_layer=col_nn.Linear1D_Col,
ignore=True,
),
Col_Layer(
weight="crossattention.self.value.weight",
bias="crossattention.self.value.bias",
replace_layer=col_nn.Linear1D_Col,
ignore=True,
),
]
@staticmethod
def attn_out() -> List:
return [
Row_Layer(
weight="attention.output.dense.weight",
bias="attention.output.dense.bias",
replace_layer=col_nn.Linear1D_Row,
),
Row_Layer(
weight="crossattention.output.dense.weight",
bias="crossattention.output.dense.bias",
replace_layer=col_nn.Linear1D_Row,
ignore=True,
),
]
@staticmethod
def mlp_in() -> List:
return [
Col_Layer(
weight="intermediate.dense.weight",
bias="intermediate.dense.bias",
replace_layer=col_nn.Linear1D_Col,
),
]
@staticmethod
def mlp_out() -> List:
return [
Row_Layer(
weight="output.dense.weight",
bias="output.dense.bias",
replace_layer=col_nn.Linear1D_Row,
),
]
@staticmethod
def embedding() -> List:
return [Col_Layer(
weight="word_embeddings.weight",
replace_layer=col_nn.VocabParallelEmbedding1D,
)]
@staticmethod
def unembedding() -> List:
return [
Col_Layer(
weight="decoder.weight",
bias="decoder.bias",
replace_layer=col_nn.Linear1D_Col,
# gather_output=True,
)
]
from transformers import BertForMaskedLM
from colossalai.shardformer.model.modeling_bert import BertForMaskedLM_
class BertForMaskedLMPolicy(BertPolicy):
@staticmethod
def inject_policy() -> Tuple[nn.Module, nn.Module]:
return (BertForMaskedLM, BertForMaskedLM_)
class BertForSequenceClassificationPolicy(BertPolicy):
@staticmethod
def inject_policy() -> Dict:
return {}
# model = BertForMaskedLM.from_pretrained("bert-base-uncased")
# _ = BertForMaskedLMPolicy(model)
# print(isinstance(model,list(_.inject_policy().keys())[0]))