ColossalAI/tests/test_zero_data_parallel/common.py

107 lines
3.8 KiB
Python

from functools import partial
import torch
import torch.distributed as dist
import torch.nn as nn
from colossalai.logging import get_dist_logger
from colossalai.utils import checkpoint
LOGGER = get_dist_logger()
CONFIG = dict(fp16=dict(mode=None,),
zero=dict(level=3,
verbose=False,
offload_optimizer_config=dict(device='cpu', pin_memory=True, buffer_count=5, fast_init=False),
offload_param_config=dict(device='cpu',
pin_memory=True,
buffer_count=5,
buffer_size=1e8,
max_in_cpu=1e9)),
parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None)))
def checkpoint_wrapper(module, enable=True):
if enable:
module.forward = partial(checkpoint, module.forward)
return module
class Net(nn.Module):
def __init__(self, checkpoint=False) -> None:
super().__init__()
self.fc1 = nn.Linear(5, 5)
self.fc2 = nn.Linear(5, 5)
self.fc3 = nn.Linear(5, 1)
if checkpoint:
self.fc1 = checkpoint_wrapper(self.fc1)
self.layers = [self.fc1, self.fc2, self.fc1, self.fc2, self.fc3]
def forward(self, x):
for layer in self.layers:
x = layer(x)
return x
def allclose(tensor_a: torch.Tensor, tensor_b: torch.Tensor, loose=False) -> bool:
if loose:
return torch.allclose(tensor_a, tensor_b, atol=1e-3, rtol=1e-3)
return torch.allclose(tensor_a, tensor_b)
def check_grads(model, zero_model, loose=False):
for p, zero_p in zip(model.parameters(), zero_model.parameters()):
zero_grad = zero_p.grad.clone().to(p.device)
assert p.grad.dtype == zero_grad.dtype
assert allclose(p.grad, zero_grad, loose=loose)
LOGGER.info(torch.sum(p.grad - zero_grad))
def check_params(model, zero_model, loose=False):
for p, zero_p in zip(model.parameters(), zero_model.parameters()):
zero_p = zero_p.clone().to(p.device)
assert p.dtype == zero_p.dtype
assert allclose(p, zero_p, loose=loose)
def check_grads_padding(model, zero_model, loose=False):
rank = dist.get_rank()
for p, zero_p in zip(model.parameters(), zero_model.parameters()):
zero_grad = zero_p.grad.clone().to(p.device)
chunks = torch.flatten(p.grad).chunk(dist.get_world_size())
if rank >= len(chunks):
continue
grad = chunks[rank]
if zero_grad.size(0) > grad.size(0):
zero_grad = zero_grad[:grad.size(0)]
assert grad.dtype == zero_grad.dtype
assert allclose(grad, zero_grad, loose=loose)
def check_params_padding(model, zero_model, loose=False):
rank = dist.get_rank()
for p, zero_p in zip(model.parameters(), zero_model.parameters()):
zero_p = zero_p.clone().to(p.device)
chunks = torch.flatten(p).chunk(dist.get_world_size())
if rank >= len(chunks):
continue
p = chunks[rank]
if zero_p.size(0) > p.size(0):
zero_p = zero_p[:p.size(0)]
assert p.dtype == zero_p.dtype
assert allclose(p, zero_p, loose=loose)
def check_sharded_params_padding(model, zero_model, loose=False):
rank = dist.get_rank()
for p, zero_p in zip(model.parameters(), zero_model.parameters()):
zero_p = zero_p.ca_attr.payload(p.device)
chunks = torch.flatten(p).chunk(dist.get_world_size())
if rank >= len(chunks):
continue
p = chunks[rank]
if zero_p.size(0) > p.size(0):
zero_p = zero_p[:p.size(0)]
assert p.dtype == zero_p.dtype
assert allclose(p, zero_p, loose=loose)