mirror of https://github.com/hpcaitech/ColossalAI
161 lines
5.3 KiB
Python
161 lines
5.3 KiB
Python
import copy
|
|
|
|
import torch
|
|
import transformers
|
|
|
|
from ..registry import ModelAttribute, model_zoo
|
|
|
|
# ===============================
|
|
# Register single-sentence GPT
|
|
# ===============================
|
|
|
|
|
|
def data_gen():
|
|
# Generated from following code snippet
|
|
#
|
|
# from transformers import GPT2Tokenizer
|
|
# input = 'Hello, my dog is cute is cute' (last two words repeated to satisfy length requirement)
|
|
# tokenized_input = tokenizer(input, return_tensors='pt')
|
|
# input_ids = tokenized_input['input_ids']
|
|
# attention_mask = tokenized_input['attention_mask']
|
|
input_ids = torch.tensor([[22, 11, 616, 4, 5, 13, 318, 345]], dtype=torch.int64)
|
|
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64)
|
|
return dict(input_ids=input_ids, attention_mask=attention_mask)
|
|
|
|
|
|
def data_gen_for_lm():
|
|
# LM data gen
|
|
# the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels`
|
|
data = data_gen()
|
|
data["labels"] = data["input_ids"].clone()
|
|
return data
|
|
|
|
|
|
def data_gen_for_question_answering():
|
|
# question answering data gen
|
|
# `labels` is the type not the token id for token classification, 0 or 1
|
|
data = data_gen()
|
|
start_positions = torch.tensor([0], dtype=torch.int64)
|
|
data["start_positions"] = start_positions
|
|
end_positions = torch.tensor([1], dtype=torch.int64)
|
|
data["end_positions"] = end_positions
|
|
return data
|
|
|
|
|
|
def data_gen_for_token_classification():
|
|
# token classification data gen
|
|
# `labels` is the type not the token id for token classification, 0 or 1
|
|
data = data_gen()
|
|
data["labels"] = torch.tensor([[0, 0, 0, 0, 0, 0, 0, 1]], dtype=torch.int64)
|
|
return data
|
|
|
|
|
|
def data_gen_for_sequence_classification():
|
|
# sequence classification data gen
|
|
data = data_gen()
|
|
data["labels"] = torch.tensor([1], dtype=torch.int64)
|
|
return data
|
|
|
|
|
|
def date_gen_for_double_heads():
|
|
num_choices = 2
|
|
batch_size = 2
|
|
input_ids = torch.tensor(
|
|
[[46, 11, 616, 432, 318, 19, 318, 555], [777, 11, 235, 333, 318, 231, 468, 136]],
|
|
dtype=torch.int64,
|
|
)
|
|
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64)
|
|
mc_labels = torch.zeros(input_ids.shape[0], dtype=torch.int64)
|
|
|
|
mc_token_ids = torch.arange(0, num_choices, dtype=torch.int64)
|
|
mc_token_ids = mc_token_ids.expand((batch_size, num_choices))
|
|
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, num_choices, -1).contiguous()
|
|
multiple_choice_input_mask = attention_mask.unsqueeze(1).expand(-1, num_choices, -1).contiguous()
|
|
|
|
inputs = {
|
|
"input_ids": multiple_choice_inputs_ids,
|
|
"mc_token_ids": mc_token_ids,
|
|
"attention_mask": multiple_choice_input_mask,
|
|
"labels": multiple_choice_inputs_ids,
|
|
"mc_labels": mc_labels,
|
|
}
|
|
return inputs
|
|
|
|
|
|
# define output transform function
|
|
output_transform_fn = lambda x: x
|
|
|
|
# define loss function
|
|
loss_fn_for_gpt2_model = lambda x: torch.nn.functional.mse_loss(
|
|
x["last_hidden_state"], torch.ones_like(x["last_hidden_state"])
|
|
)
|
|
loss_fn = lambda x: x["loss"]
|
|
|
|
config = transformers.GPT2Config(
|
|
n_layer=2,
|
|
n_head=4,
|
|
n_embd=128,
|
|
vocab_size=1024,
|
|
attn_pdrop=0,
|
|
embd_pdrop=0,
|
|
resid_pdrop=0,
|
|
summary_first_dropout=0,
|
|
hidden_dropout=0,
|
|
problem_type="single_label_classification",
|
|
pad_token_id=1022,
|
|
tie_word_embeddings=True,
|
|
)
|
|
|
|
config_for_token_classification = copy.deepcopy(config)
|
|
config_for_token_classification.num_labels = 2
|
|
|
|
# register the following models
|
|
model_zoo.register(
|
|
name="transformers_gpt",
|
|
model_fn=lambda: transformers.GPT2Model(config),
|
|
data_gen_fn=data_gen,
|
|
output_transform_fn=output_transform_fn,
|
|
loss_fn=loss_fn_for_gpt2_model,
|
|
model_attribute=ModelAttribute(has_control_flow=True),
|
|
)
|
|
model_zoo.register(
|
|
name="transformers_gpt_lm",
|
|
model_fn=lambda: transformers.GPT2LMHeadModel(config),
|
|
data_gen_fn=data_gen_for_lm,
|
|
output_transform_fn=output_transform_fn,
|
|
loss_fn=loss_fn,
|
|
model_attribute=ModelAttribute(has_control_flow=True),
|
|
)
|
|
model_zoo.register(
|
|
name="transformers_gpt_double_heads",
|
|
model_fn=lambda: transformers.GPT2DoubleHeadsModel(config),
|
|
data_gen_fn=date_gen_for_double_heads,
|
|
output_transform_fn=output_transform_fn,
|
|
loss_fn=lambda x: x.loss + x.mc_loss,
|
|
model_attribute=ModelAttribute(has_control_flow=True),
|
|
)
|
|
model_zoo.register(
|
|
name="transformers_gpt_for_question_answering",
|
|
model_fn=lambda: transformers.GPT2ForQuestionAnswering(config),
|
|
data_gen_fn=data_gen_for_question_answering,
|
|
output_transform_fn=output_transform_fn,
|
|
loss_fn=loss_fn,
|
|
model_attribute=ModelAttribute(has_control_flow=True),
|
|
)
|
|
model_zoo.register(
|
|
name="transformers_gpt_for_token_classification",
|
|
model_fn=lambda: transformers.GPT2ForTokenClassification(config_for_token_classification),
|
|
data_gen_fn=data_gen_for_token_classification,
|
|
output_transform_fn=output_transform_fn,
|
|
loss_fn=loss_fn,
|
|
model_attribute=ModelAttribute(has_control_flow=True),
|
|
)
|
|
model_zoo.register(
|
|
name="transformers_gpt_for_sequence_classification",
|
|
model_fn=lambda: transformers.GPT2ForSequenceClassification(config_for_token_classification),
|
|
data_gen_fn=data_gen_for_sequence_classification,
|
|
output_transform_fn=output_transform_fn,
|
|
loss_fn=loss_fn,
|
|
model_attribute=ModelAttribute(has_control_flow=True),
|
|
)
|