ColossalAI/colossalai/zero/gemini/chunk/chunk.py

653 lines
24 KiB
Python

from dataclasses import dataclass
from enum import Enum
from typing import Dict, List, Optional
import torch
import torch.distributed as dist
from torch.distributed import ProcessGroup
from colossalai.accelerator import get_accelerator
class TensorState(Enum):
FREE = 0
COMPUTE = 1
HOLD = 2
HOLD_AFTER_BWD = 3
READY_FOR_REDUCE = 4
STATE_TRANS = (
(TensorState.FREE, TensorState.HOLD),
(TensorState.FREE, TensorState.COMPUTE),
(TensorState.HOLD, TensorState.FREE),
(TensorState.HOLD, TensorState.COMPUTE),
(TensorState.COMPUTE, TensorState.HOLD),
(TensorState.COMPUTE, TensorState.HOLD_AFTER_BWD),
(TensorState.HOLD_AFTER_BWD, TensorState.COMPUTE),
(TensorState.HOLD_AFTER_BWD, TensorState.READY_FOR_REDUCE),
(TensorState.READY_FOR_REDUCE, TensorState.HOLD),
)
@dataclass
class TensorInfo:
state: TensorState
offset: int
end: int
class ChunkFullError(Exception):
pass
def is_storage_empty(tensor: torch.Tensor) -> bool:
return tensor.storage().size() == 0
def free_storage(tensor: torch.Tensor) -> None:
if not is_storage_empty(tensor):
tensor.storage().resize_(0)
def alloc_storage(tensor: torch.Tensor) -> None:
if is_storage_empty(tensor):
tensor.storage().resize_(tensor.numel())
class Chunk:
_total_number = 0
def __init__(
self,
chunk_size: int,
zero_group: ProcessGroup,
dtype: torch.dtype,
init_device: Optional[torch.device] = None,
cpu_shard_init: bool = False,
keep_gathered: bool = False,
pin_memory: bool = False,
extra_dp_group: ProcessGroup = None,
) -> None:
"""
Chunk: A container owning a piece of contiguous memory space for tensors
Here we use all-gather operation to gather the whole chunk.
Currently, Chunk is exclusively used for DDP and ZeRO DDP and it doesn't support unused parameters.
It is designed to make the full use of communication and PCIE bandwidth.
Args:
chunk_size (int): the number of elements in the chunk
zero_group (ProcessGroup): the process group of this chunk
dtype (torch.dtype): the data type of the chunk
init_device (torch.device): optional, During the chunk construction process, where the tensor is stored.
The default value is None, which is the current GPU
cpu_shard_init (bool): a flag indicates the local chunk shard is resident on CPU.
keep_gathered (bool): optional, if True, this chunk is always gathered in CUDA memory
pin_memory (bool): optional, if True, this chunk always has a shard copied in pinned CPU memory
"""
self.count_id = Chunk._total_number
Chunk._total_number += 1
self.chunk_size = chunk_size
self.utilized_size = 0
self.torch_pg = zero_group
self.pg_size = dist.get_world_size(self.torch_pg)
self.pg_rank = dist.get_rank(self.torch_pg)
self.extra_dp_group = extra_dp_group
self.extra_dp_size = dist.get_world_size(self.extra_dp_group) if self.extra_dp_group is not None else 1
# the chunk size should be divisible by the dp degree
if not keep_gathered:
assert chunk_size % self.pg_size == 0
self.shard_size = chunk_size // self.pg_size
self.shard_begin = self.shard_size * self.pg_rank
self.shard_end = self.shard_begin + self.shard_size
self.valid_end = self.shard_size
self.dtype = dtype
device = init_device or get_accelerator().get_current_device()
# chunk_temp is a global chunk, which only exists during building the chunks.
self.chunk_temp = torch.zeros(chunk_size, dtype=dtype, device=device) # keep all zero
self.cuda_global_chunk = None # we force cuda_global_chunk located in CUDA
# cuda local chunk, which is sharded on GPUs
self.cuda_shard = None
# cpu local chunk, which is sharded on CPUs
self.cpu_shard = None
# is the chunks gathers, which means chunks are duplicated on each process,
# and we should use the cuda_global_chunk.
self.is_gathered = True
# configure the init device of the shard
# no-offload default: fp16, fp32 -> CUDA
# offload default: fp16, fp32 -> CPU
self.shard_device = torch.device("cpu") if cpu_shard_init else get_accelerator().get_current_device()
self.chunk_mem = self.chunk_size * self.chunk_temp.element_size()
self.shard_mem = self.chunk_mem // self.pg_size
# each tensor is associated with a TensorInfo to track its meta info
# (state, offset, end)
self.tensors_info: Dict[torch.Tensor, TensorInfo] = {}
# the total number of tensors in the chunk
self.num_tensors = 0
# Record the number of tensors in different states
self.tensor_state_cnter: Dict[TensorState, int] = dict()
for state in TensorState:
self.tensor_state_cnter[state] = 0
# If a chunk is kept gathered,
# they are treated the same as that of the parameters in DDP during training.
self.keep_gathered = keep_gathered
if self.keep_gathered:
pin_memory = False # since this chunk is gathered, it doesn't need to pin
# if pin_memory is True, we allocate a piece of CPU pin-memory
# for it all the time
self.pin_memory = pin_memory
# we introduce the paired chunk here
# it refers to another chunk having the same parameters
# but with different dtype(such as fp16_chunk.paired_chunk -> fp32_chunk
self.paired_chunk = None
# if this chunk is synchronized with the optimizer, the flag is True
self.optim_sync_flag = True
# if the cpu_shard has been visited during the training step, the flag is True
self.cpu_vis_flag = False
# whether to record l2 norm for the gradient clipping calculation
self.l2_norm_flag = False
self.l2_norm = None
self.grad_chunk = None
@property
def memory_usage(self) -> Dict[str, int]:
cuda_memory = 0
cpu_memory = 0
if self.chunk_temp is not None:
# this chunk is not closed
if self.chunk_temp.device.type == "cuda" or self.chunk_temp.device.type == "npu":
cuda_memory += self.chunk_mem
else:
cpu_memory += self.chunk_mem
else:
if self.is_gathered:
cuda_memory += self.chunk_mem
if self.cuda_shard is not None:
cuda_memory += self.shard_mem
if self.cpu_shard is not None:
cpu_memory += self.shard_mem
return dict(cuda=cuda_memory, cpu=cpu_memory)
@property
def device_type(self) -> str:
if self.chunk_temp is not None:
return self.chunk_temp.device.type
elif self.is_gathered or self.cuda_shard is not None:
return get_accelerator().name
else:
return "cpu"
@property
def payload(self) -> torch.Tensor:
# sanity check
assert self.chunk_temp is None
if self.is_gathered:
return self.cuda_global_chunk
elif self.cuda_shard is not None:
return self.cuda_shard
else:
return self.cpu_shard
@property
def payload_mem(self) -> int:
# sanity check
assert self.chunk_temp is None
if self.is_gathered:
return self.chunk_mem
else:
return self.shard_mem
@property
def can_move(self) -> bool:
return not self.is_gathered
@property
def can_release(self) -> bool:
if self.keep_gathered:
return False
else:
return (
self.tensor_state_cnter[TensorState.HOLD] + self.tensor_state_cnter[TensorState.HOLD_AFTER_BWD]
== self.num_tensors
)
@property
def can_reduce(self):
return self.tensor_state_cnter[TensorState.READY_FOR_REDUCE] == self.num_tensors
@property
def has_inf_or_nan(self) -> bool:
"""Check if the chunk has inf or nan values on CUDA."""
if self.is_gathered:
valid_tensor = self.cuda_global_chunk[: self.utilized_size]
else:
assert self.cuda_shard is not None # only check on CUDA
valid_tensor = self.cuda_shard[: self.valid_end]
return torch.isinf(valid_tensor).any().item() | torch.isnan(valid_tensor).any().item()
def set_l2_norm(self) -> None:
"""Record l2 norm of this chunks on CUDA."""
assert self.l2_norm is None, "you are calculating the l2 norm twice"
if self.is_gathered:
valid_tensor = self.cuda_global_chunk[: self.utilized_size]
else:
assert self.cuda_shard is not None # calculate on CUDA
valid_tensor = self.cuda_shard[: self.valid_end]
chunk_l2_norm = valid_tensor.data.float().norm(2)
self.l2_norm = chunk_l2_norm.item() ** 2
def append_tensor(self, tensor: torch.Tensor):
"""Add a tensor to the chunk.
Args:
tensor (torch.Tensor): a tensor to be added to the chunk
"""
# sanity check
assert self.chunk_temp is not None
assert tensor.dtype == self.dtype
new_utilized_size = self.utilized_size + tensor.numel()
# raise exception when the chunk size is exceeded
if new_utilized_size > self.chunk_size:
raise ChunkFullError
self.chunk_temp[self.utilized_size : new_utilized_size].copy_(tensor.data.flatten())
assert type(self.chunk_temp) == torch.Tensor, "copy_tensor_to_chunk_slice must use a torch tensor"
tensor.data = self.chunk_temp[self.utilized_size : new_utilized_size].view(tensor.shape)
# record all the information about the tensor
self.num_tensors += 1
tensor_state = TensorState.HOLD
self.tensors_info[tensor] = TensorInfo(tensor_state, self.utilized_size, new_utilized_size)
self.tensor_state_cnter[tensor_state] += 1
self.utilized_size = new_utilized_size
def close_chunk(self):
"""Close the chunk. Any tensor can't be appended to a closed chunk later."""
# sanity check
assert self.chunk_temp is not None
# calculate the valid end for each shard
if self.utilized_size <= self.shard_begin:
self.valid_end = 0
elif self.utilized_size < self.shard_end:
self.valid_end = self.utilized_size - self.shard_begin
if self.chunk_temp.device.type == "cpu":
self.cuda_global_chunk = self.chunk_temp.to(get_accelerator().get_current_device())
self.__update_tensors_ptr()
else:
self.cuda_global_chunk = self.chunk_temp
self.chunk_temp = None
self.__scatter()
# gathered chunk never have shard attribute
if self.keep_gathered:
return
if self.pin_memory or self.shard_device.type == "cpu":
self.cpu_shard = torch.empty(self.shard_size, dtype=self.dtype, pin_memory=self.pin_memory)
self.cpu_shard.copy_(self.cuda_shard)
self.cpu_vis_flag = True # cpu_shard has been visited
if self.shard_device.type == "cpu":
self.cuda_shard = None
def shard_move(self, device: torch.device, force_copy: bool = False):
"""Move the shard tensor in the chunk.
Args:
device: the device to which the shard will move
force_copy: if True, copy function is called mandatorily
"""
# sanity check
assert not self.is_gathered
# when the current chunk is not synchronized with the optimizer
# just use another way for the movement
if not self.optim_sync_flag:
assert device.type == "cuda" or device.type == "npu", "each chunk should first be moved to CUDA"
self.__paired_shard_move()
self.optim_sync_flag = True
return
if device.type == "cuda" or device.type == "npu":
assert device == get_accelerator().get_current_device(), "can't move chunk to another device"
if self.cuda_shard:
return
self.cuda_shard = self.cpu_shard.to(get_accelerator().get_current_device())
if not self.pin_memory:
self.cpu_shard = None
elif device.type == "cpu":
if self.cuda_shard is None:
return
if self.pin_memory:
if force_copy or not self.cpu_vis_flag:
self.cpu_shard.copy_(self.cuda_shard)
# if cpu_shard has been visited
# copy operation is not need
else:
self.cpu_shard = self.cuda_shard.cpu()
self.cpu_vis_flag = True
self.cuda_shard = None
else:
raise NotImplementedError
def access_chunk(self):
"""Make the chunk usable for the parameters inside it. It's an operation done in CUDA."""
# sanity check
assert self.chunk_temp is None
if not self.is_gathered:
self.__gather()
self.__update_tensors_ptr()
def release_chunk(self):
"""Release the usable chunk. It's an operation done in CUDA."""
# sanity check
assert self.chunk_temp is None
if self.is_gathered:
self.__scatter()
def reduce(self):
"""Reduce scatter all the gradients. It's an operation done in CUDA."""
# sanity check
assert self.is_gathered
if self.pg_size == 1:
# tricky code here
# just move cuda_global_chunk to cuda_shard
# the communication is not necessary
self.__scatter()
if self.extra_dp_group is not None:
dist.all_reduce(self.cuda_shard, group=self.extra_dp_group)
elif self.keep_gathered:
# we use all-reduce here
dist.all_reduce(self.cuda_global_chunk, group=self.torch_pg)
if self.extra_dp_group is not None:
dist.all_reduce(self.cuda_global_chunk, group=self.extra_dp_group)
else:
self.cuda_shard = torch.empty(
self.shard_size, dtype=self.dtype, device=get_accelerator().get_current_device()
)
input_list = list(torch.chunk(self.cuda_global_chunk, chunks=self.pg_size, dim=0))
dist.reduce_scatter(self.cuda_shard, input_list, group=self.torch_pg)
if self.extra_dp_group is not None:
dist.all_reduce(self.cuda_shard, group=self.extra_dp_group)
free_storage(self.cuda_global_chunk)
self.is_gathered = False
self.__update_tensors_state(TensorState.HOLD)
def tensor_trans_state(self, tensor: torch.Tensor, tensor_state: TensorState) -> None:
"""
Make a transition of the tensor into the next state.
Args:
tensor (torch.Tensor): a torch Tensor object.
tensor_state (TensorState): the target state for transition.
"""
# As the gradient hook can be triggered either before or after post-backward
# tensor's state can be compute -> hold_after_bwd -> ready_for_reduce
# or compute -> ready_for_reduce -> hold_after_bwd
# the second one is invalid, we just ignore ready_for_reduce -> hold_after_bwd
# this function only apply valid state transformation
# invalid calls will be ignored and nothing changes
if (self.tensors_info[tensor].state, tensor_state) not in STATE_TRANS:
return
self.__update_one_tensor_info(self.tensors_info[tensor], tensor_state)
def copy_tensor_to_chunk_slice(
self, tensor: torch.Tensor, data_slice: torch.Tensor, update_ptr: bool = True
) -> None:
"""
Copy data slice to the memory space indexed by the input tensor in the chunk.
Args:
tensor (torch.Tensor): the tensor used to retrieve meta information
data_slice (torch.Tensor): the tensor to be copied to the chunk
"""
# sanity check
assert self.is_gathered
tensor_info = self.tensors_info[tensor]
self.cuda_global_chunk[tensor_info.offset : tensor_info.end].copy_(data_slice.data.flatten())
if update_ptr:
tensor.data = self.cuda_global_chunk[tensor_info.offset : tensor_info.end].view(tensor.shape)
def add_tensor_to_chunk_slice(self, tensor: torch.Tensor, data_slice: torch.Tensor) -> None:
"""
Add data slice to the memory space indexed by the input tensor in the chunk.
Only used when accumulating gradient chunks.
Args:
tensor (torch.Tensor): the tensor used to retrieve meta information
data_slice (torch.Tensor): the tensor to be added to the chunk
"""
# sanity check
assert self.is_gathered
tensor_info = self.tensors_info[tensor]
self.cuda_global_chunk[tensor_info.offset : tensor_info.end].add_(data_slice.data.flatten())
def get_valid_length(self) -> int:
"""Get the valid length of the chunk's payload."""
if self.keep_gathered:
return self.utilized_size
else:
return self.valid_end
def init_pair(self, friend_chunk: "Chunk") -> None:
"""Initialize the paired chunk."""
if self.paired_chunk is None and friend_chunk.paired_chunk is None:
self.paired_chunk = friend_chunk
friend_chunk.paired_chunk = self
else:
assert self.paired_chunk is friend_chunk
assert friend_chunk.paired_chunk is self
def optim_update(self) -> None:
"""Update the fp16 chunks via their fp32 chunks. It's used by the optimizer."""
# sanity check
assert self.paired_chunk is not None
friend_chunk = self.paired_chunk
if self.is_gathered is True:
assert friend_chunk.is_gathered is True
self.cuda_global_chunk.copy_(friend_chunk.cuda_global_chunk)
self.optim_sync_flag = True
elif friend_chunk.device_type in ("cuda", "npu") and self.device_type in ("cuda", "npu"):
self.cuda_shard.copy_(friend_chunk.cuda_shard)
self.optim_sync_flag = True
self.cpu_vis_flag = False
else:
# optim_sync_flag is set to False
# see shard_move function for more details
assert friend_chunk.device_type == "cpu"
assert self.device_type == "cpu"
self.optim_sync_flag = False
self.cpu_vis_flag = False
def get_tensors(self) -> List[torch.Tensor]:
return list(self.tensors_info.keys())
def __gather(self):
if not self.is_gathered:
# sanity check
assert self.cuda_shard is not None
alloc_storage(self.cuda_global_chunk)
gather_list = list(torch.chunk(input=self.cuda_global_chunk, chunks=self.pg_size, dim=0))
dist.all_gather(gather_list, self.cuda_shard, self.torch_pg)
self.cuda_shard = None
self.is_gathered = True
def __scatter(self):
if self.keep_gathered:
return
if self.is_gathered:
# sanity check
assert self.cuda_shard is None
self.cuda_shard = torch.empty(self.shard_size, dtype=self.dtype, device=self.cuda_global_chunk.device)
self.cuda_shard.copy_(self.cuda_global_chunk[self.shard_begin : self.shard_end])
free_storage(self.cuda_global_chunk)
self.is_gathered = False
def __paired_shard_move(self):
assert self.paired_chunk is not None, "chunks should be paired before training"
optim_chunk = self.paired_chunk
assert self.chunk_size == optim_chunk.chunk_size
# only be called when optimizer state is in CPU memory
# the grad and param should be in the same device
assert self.cuda_shard is None
temp = optim_chunk.cpu_shard.to(get_accelerator().get_current_device())
# avoid to transform FP32 in CPU
self.cuda_shard = temp.to(self.dtype)
if not self.pin_memory:
self.cpu_shard = None
def __update_tensors_ptr(self) -> None:
# sanity check
assert self.is_gathered
assert type(self.cuda_global_chunk) == torch.Tensor
for tensor, tensor_info in self.tensors_info.items():
tensor.data = self.cuda_global_chunk[tensor_info.offset : tensor_info.end].view(tensor.shape)
def __update_one_tensor_info(self, tensor_info: TensorInfo, next_state: TensorState):
self.tensor_state_cnter[tensor_info.state] -= 1
tensor_info.state = next_state
self.tensor_state_cnter[tensor_info.state] += 1
def __update_tensors_state(self, next_state: TensorState, prev_state: Optional[TensorState] = None):
for tensor_info in self.tensors_info.values():
if prev_state is None or tensor_info.state == prev_state:
self.__update_one_tensor_info(tensor_info, next_state)
def __hash__(self) -> int:
return hash(id(self))
def __eq__(self, __o: object) -> bool:
return self is __o
def __repr__(self, detailed: bool = True):
output = [
"Chunk Information:\n",
"\tchunk size: {}, chunk dtype: {}, process group size: {}\n".format(
self.chunk_size, self.dtype, self.pg_size
),
"\t# of tensors: {}, utilized size: {}, utilized percentage: {:.2f}\n".format(
self.num_tensors, self.utilized_size, self.utilized_size / self.chunk_size
),
]
def print_tensor(tensor, prefix=""):
output.append(
"{}shape: {}, dtype: {}, device: {}\n".format(prefix, tensor.shape, tensor.dtype, tensor.device)
)
if self.chunk_temp is not None:
output.append("\tchunk temp:\n")
print_tensor(tensor=self.chunk_temp, prefix="\t\t")
if self.cuda_global_chunk is not None and self.cuda_global_chunk.storage().size() > 0:
output.append("\tchunk total:\n")
print_tensor(tensor=self.cuda_global_chunk, prefix="\t\t")
if self.cuda_shard is not None:
output.append("\tcuda shard:\n")
print_tensor(tensor=self.cuda_shard, prefix="\t\t")
if self.cpu_shard is not None:
output.append("\tcpu shard:\n")
print_tensor(tensor=self.cpu_shard, prefix="\t\t")
memory_info = self.memory_usage
output.append("\tmemory usage: cuda {}, cpu {}\n".format(memory_info["cuda"], memory_info["cpu"]))
if detailed:
output.append("\ttensor state monitor:\n")
for st in TensorState:
output.append("\t\t# of {}: {}\n".format(st, self.tensor_state_cnter[st]))
return "".join(output)
def init_grad_chunk(self) -> "Chunk":
"""Init grad chunk. This should be called in grad handler.
Returns:
Chunk: Grad chunk
"""
if self.grad_chunk is None:
# grad chunk is not initialized
grad_chunk = Chunk(
chunk_size=self.chunk_size,
zero_group=self.torch_pg,
dtype=self.dtype,
keep_gathered=self.keep_gathered,
pin_memory=self.pin_memory,
extra_dp_group=self.extra_dp_group,
)
grad_chunk.num_tensors = self.num_tensors
grad_chunk.utilized_size = self.utilized_size
grad_chunk.tensor_state_cnter[TensorState.HOLD] = self.num_tensors
for tensor, state in self.tensors_info.items():
grad_chunk.tensors_info[tensor] = TensorInfo(TensorState.HOLD, state.offset, state.end)
grad_chunk.valid_end = self.valid_end
if grad_chunk.chunk_temp.device.type == "cpu":
grad_chunk.cuda_global_chunk = grad_chunk.chunk_temp.to(get_accelerator().get_current_device())
else:
grad_chunk.cuda_global_chunk = grad_chunk.chunk_temp
grad_chunk.chunk_temp = None
if grad_chunk.pin_memory:
grad_chunk.cpu_shard = torch.empty(
grad_chunk.shard_size, dtype=grad_chunk.dtype, pin_memory=grad_chunk.pin_memory
)
self.grad_chunk = grad_chunk
else:
# grad chunk is initialized, just reallocate cuda global chunk
self.grad_chunk.cuda_shard = None
self.grad_chunk.is_gathered = True
self.grad_chunk.l2_norm = None
alloc_storage(self.grad_chunk.cuda_global_chunk)
return self.grad_chunk