ColossalAI/colossalai/shardformer/layer/linear.py

650 lines
26 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import math
from typing import Callable, List, Optional, Tuple, Union
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.distributed import ProcessGroup
from torch.nn.parameter import Parameter
from colossalai.lazy import LazyInitContext
from colossalai.nn import init as init
from colossalai.nn.layer.utils import divide
from colossalai.tensor.d_tensor.api import (
is_distributed_tensor,
shard_colwise,
shard_rowwise,
sharded_tensor_to_existing_param,
)
from ._operation import (
gather_forward_reducescatter_backward,
gather_forward_split_backward,
linear_gather_forward_reducescatter_backward,
linear_reducescatter_forward_gather_backward,
linear_with_async_comm,
reduce_forward,
reducescatter_forward_gather_backward,
split_forward_gather_backward,
)
from .parallel_module import PaddingParallelModule, ParallelModule
from .utils import create_randomizer_with_offset
__all__ = ["Linear1D_Col", "Linear1D_Row"]
class Linear1D_Col(ParallelModule):
r"""Linear layer with column parallelism.
The linear layer is defined as :math:`Y = XA + b`. A is parallelized along
its second dimension as :math:`A = [A_1, ..., A_p]`.
Args:
in_features (int): size of each input sample.
out_features (int): size of each output sample.
bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``.
dtype (`torch.dtype`): The dtype of parameters, defaults to None.
device (`torch.device`): The device of parameters, defaults to None.
process_group (`torch.distributed.ProcessGroup`): The process group to be used for weight sharding and communication, defaults to None.
gather_output (bool, optional): If true, call all-gather on output and make Y available
to all GPUs, otherwise, every GPU will have its output
which is :math:`Y_i = XA_i`, defaults to False
seq_parallel (`bool`): If set to ``True``, it will use sequence parallel, defaults to False.
overlap (`bool`): If set to ``True``, it will overlap input all-gather with gradient computation during backward, defaults to False.
skip_bias_add (bool): If set to ``True``, it will skip bias add for linear layer,
which is preserved for kernel fusion, defaults to False
weight_initializer (`typing.Callable`):
The initializer of weight, defaults to kaiming uniform initializer.
bias_initializer (`typing.Callable`):
The initializer of bias, defaults to xavier uniform initializer.
More details about ``initializer`` please refer to
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_.
"""
def __init__(
self,
in_features: int,
out_features: int,
bias: bool = True,
dtype: torch.dtype = None,
device: torch.device = None,
process_group: ProcessGroup = None,
gather_output: bool = False,
seq_parallel_mode: str = None,
seq_parallel_dim: int = 1,
overlap: torch.cuda.Stream = None,
skip_bias_add: bool = False,
weight: Optional[Parameter] = None,
bias_: Optional[Parameter] = None,
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
**kwargs,
):
super().__init__(weight=weight, bias_=bias_, **kwargs)
# Keep input parameters
self.in_features = in_features
self.out_features = out_features
self.gather_output = gather_output
self.seq_parallel_mode = seq_parallel_mode
self.seq_parallel_dim = seq_parallel_dim
self.overlap = overlap
self.skip_bias_add = skip_bias_add
self.device = device
self.process_group = process_group
if skip_bias_add and not bias:
raise ValueError("cannot skip bias addition if bias is None")
# offset the seed with randomizer index and rank
seed = torch.random.initial_seed()
self.randomizer = create_randomizer_with_offset(seed, process_group=self.process_group)
# sanity check
if weight is not None:
assert not bias or bias_ is not None, "bias_ must be provided if bias is True when weight is not None"
else:
assert bias_ is None, "bias_ must be None if weight is None"
# Parameters.
if weight is None:
factory_kwargs = {"device": device, "dtype": dtype}
self.weight = Parameter(torch.empty(self.out_features, self.in_features, **factory_kwargs))
else:
weight.data = weight.data.to(device=device, dtype=dtype)
self.weight = weight
if not is_distributed_tensor(self.weight):
sharded_weight = shard_rowwise(self.weight.data, self.process_group)
sharded_tensor_to_existing_param(sharded_weight, self.weight)
if bias:
if bias_ is None:
self.bias = Parameter(torch.empty(self.out_features, **factory_kwargs))
else:
bias_.data = bias_.data.to(device=device, dtype=dtype)
self.bias = bias_
if not is_distributed_tensor(self.bias):
sharded_bias = shard_colwise(self.bias.data, self.process_group)
sharded_tensor_to_existing_param(sharded_bias, self.bias)
else:
self.bias = None
if weight is None:
# init weights
self.reset_parameters(weight_initializer, bias_initializer)
@staticmethod
def from_native_module(
module: nn.Linear, process_group: Union[ProcessGroup, List[ProcessGroup]], **kwargs
) -> ParallelModule:
r"""
Convert a native PyTorch linear layer to a parallelized linear layer.
"""
LazyInitContext.materialize(module)
# get the attributes
in_features = module.in_features
out_features = module.out_features
bias = module.bias is not None
device = module.weight.device
# ensure only one process group is passed
if isinstance(process_group, (list, tuple)):
assert len(process_group) == 1, f"Expected only one process group, got {len(process_group)}."
process_group = process_group[0]
tp_size = dist.get_world_size(process_group)
if out_features < tp_size:
return module
if out_features % tp_size != 0:
raise ValueError(
f"The size of out_features:{out_features} is not integer multiples of tensor parallel size: {tp_size}!"
)
linear_1d = Linear1D_Col(
in_features=in_features,
out_features=out_features,
bias=bias,
device=device,
process_group=process_group,
weight=module.weight,
bias_=module.bias,
**kwargs,
)
return linear_1d
def reset_parameters(self, weight_initializer, bias_initializer) -> None:
with self.randomizer.fork_rng(enable_cpu=True):
fan_in, fan_out = self.in_features, self.out_features
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
if self.bias is not None:
bias_initializer(self.bias, fan_in=fan_in)
def forward(self, input_: Tensor) -> Tuple[Tensor, Tensor]:
assert (
input_.shape[-1] == self.weight.shape[-1]
), "Invalid shapes in Linear1D_Col forward: input={}, weight={}. Expected last dim of input {}.".format(
input_.shape, self.weight.shape, self.weight.shape[-1]
)
# Set up backprop all-reduce.
input_parallel = input_
# Matrix multiply.
bias = self.bias if not self.skip_bias_add else None
if self.seq_parallel_mode is None:
output_parallel = linear_with_async_comm(input_parallel, self.weight, bias, self.process_group, True)
elif self.seq_parallel_mode == "split_gather":
input_parallel = gather_forward_reducescatter_backward(
input_parallel, self.process_group, self.seq_parallel_dim
)
output_parallel = linear_with_async_comm(input_parallel, self.weight, bias, self.process_group, False)
elif self.seq_parallel_mode == "ring":
output_parallel = linear_gather_forward_reducescatter_backward(
input_parallel, self.weight, bias, self.process_group, True, self.seq_parallel_dim, self.overlap, True
)
if self.gather_output:
# All-gather across the partitions.
output = gather_forward_split_backward(output_parallel, dim=-1, process_group=self.process_group)
else:
output = output_parallel
if self.skip_bias_add:
return output, self.bias
else:
return output
class Linear1D_Row(ParallelModule):
r"""Linear layer with row parallelism
Args:
in_features (int): size of each input sample.
out_features (int): size of each output sample.
bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``.
dtype (`torch.dtype`): The dtype of parameters, defaults to None.
parallel_input (bool): If set to ``True``, it's assumed that the input is split, defaults to False.
process_group (`torch.distributed.ProcessGroup`): The process group to be used for weight sharding and communication, defaults to None.
seq_parallel_mode (`str`): The type of sp mode, it will use sequence parallel when `seq_parallel_mode` is not None. Defaults to None.
seq_parallel_dim (`int`): Which dim will sequence parallelism split and gather the sequence.
skip_bias_add (bool): If set to ``True``, it will skip bias add for linear layer,
which is preserved for kernel fusion, defaults to False
weight_initializer (:class:`typing.Callable`, optional):
The initializer of weight, defaults to kaiming uniform initializer.
bias_initializer (:class:`typing.Callable`, optional):
The initializer of bias, defaults to xavier uniform initializer.
More details about ``initializer`` please refer to
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_.
"""
def __init__(
self,
in_features: int,
out_features: int,
bias: bool = True,
dtype: torch.dtype = None,
device: torch.device = None,
process_group: ProcessGroup = None,
seq_parallel_mode: str = None,
seq_parallel_dim: int = 1,
parallel_input: bool = True,
skip_bias_add: bool = False,
weight: Optional[Parameter] = None,
bias_: Optional[Parameter] = None,
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
stream_chunk_num: int = 1,
):
super().__init__()
self.stream_chunk_num = stream_chunk_num
# Keep input parameters
self.in_features = in_features
self.out_features = out_features
self.parallel_input = parallel_input
self.skip_bias_add = skip_bias_add
self.process_group = process_group
self.seq_parallel_mode = seq_parallel_mode
self.seq_parallel_dim = seq_parallel_dim
self.num_partitions = dist.get_world_size(self.process_group)
if skip_bias_add and not bias:
raise ValueError("cannot skip bias addition if bias is None")
# offset the seed with randomizer index and rank
seed = torch.random.initial_seed()
self.randomizer = create_randomizer_with_offset(seed, process_group=self.process_group)
# sanity check
if weight is not None:
assert not bias or bias_ is not None, "bias_ must be provided if bias is True when weight is not None"
else:
assert bias_ is None, "bias_ must be None if weight is None"
# Parameters.
if weight is None:
# Initialize weight.
factory_kwargs = {"device": device, "dtype": dtype}
self.weight = Parameter(torch.empty(self.out_features, self.in_features, **factory_kwargs))
else:
weight.data = weight.data.to(device=device, dtype=dtype)
self.weight = weight
if not is_distributed_tensor(self.weight):
sharded_weight = shard_colwise(self.weight.data, self.process_group)
sharded_tensor_to_existing_param(sharded_weight, self.weight)
if self.stream_chunk_num > 1:
# TODO() work for inference only
self.chunk_weight()
if bias:
if bias_ is None:
self.bias = Parameter(torch.empty(self.out_features, **factory_kwargs))
else:
bias_.data = bias_.data.to(device=device, dtype=dtype)
self.bias = bias_
else:
self.bias = None
if weight is None:
with self.randomizer.fork_rng(enable_cpu=True):
self.reset_parameters(weight_initializer, bias_initializer)
@staticmethod
def from_native_module(
module: nn.Linear, process_group: Union[ProcessGroup, List[ProcessGroup]], **kwargs
) -> ParallelModule:
r"""
Convert a native PyTorch linear layer to a parallelized linear layer.
"""
LazyInitContext.materialize(module)
# get the attributes
in_features = module.in_features
out_features = module.out_features
bias = module.bias is not None
device = module.weight.device
# ensure only one process group is passed
if isinstance(process_group, (list, tuple)):
assert len(process_group) == 1, f"Expected only one process group, got {len(process_group)}."
process_group = process_group[0]
tp_size = dist.get_world_size(process_group)
if in_features < tp_size:
return module
if in_features % tp_size != 0:
raise ValueError(
f"The size of in_features:{in_features} is not integer multiples of tensor parallel size: {tp_size}!"
)
linear_1d = Linear1D_Row(
in_features=in_features,
out_features=out_features,
bias=bias,
device=device,
process_group=process_group,
weight=module.weight,
bias_=module.bias,
**kwargs,
)
return linear_1d
def chunk_weight(self):
self.weight_list = torch.chunk(self.weight, self.stream_chunk_num, dim=0)
@torch.no_grad()
def reset_parameters(self, weight_initializer, bias_initializer) -> None:
fan_in, fan_out = self.in_features, self.out_features
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
if self.bias is not None:
bias_initializer(self.bias, fan_in=fan_in)
if self.process_group is None:
src_rank = 0
else:
src_rank = dist.distributed_c10d._get_global_rank(self.process_group, 0)
origin_device = self.bias.device
bias = self.bias.cuda()
dist.broadcast(bias, src=src_rank, group=self.process_group)
bias = bias.to(origin_device)
self.bias.copy_(bias)
def forward(self, input_: Tensor) -> Tensor:
# Set up backprop all-reduce.
if self.parallel_input:
assert (
input_.shape[-1] == self.weight.shape[-1]
), "Invalid shapes in Linear1D_Row forward: input={}, weight={}. Expected last dim of input {}.".format(
input_.shape, self.weight.shape, self.weight.shape[-1]
)
input_ = input_
else:
assert (
divide(input_.shape[-1], self.num_partitions) == self.weight.shape[-1]
), "Invalid shapes in Linear1D_Row forward: input={}, weight={}. Expected last dim of input {}.".format(
input_.shape, self.weight.shape, self.weight.shape[-1] * self.num_partitions
)
input_ = split_forward_gather_backward(input_, dim=-1, process_group=self.process_group)
if self.stream_chunk_num > 1:
if self.training:
raise RuntimeError("use stream_chunk_num=1 in Linear1D_Row for training!")
with torch.no_grad():
output_parallel_list = [None for i in range(self.stream_chunk_num)]
handle_list = []
for i in range(self.stream_chunk_num):
output_parallel_list[i] = F.linear(input_, self.weight_list[i])
handle = torch.distributed.all_reduce(
output_parallel_list[i], group=self.process_group, async_op=True
)
handle_list.append(handle)
for handle in handle_list:
handle.wait()
output = torch.cat(output_parallel_list, dim=-1)
else:
if self.seq_parallel_mode is None:
output_parallel = linear_with_async_comm(input_, self.weight, None, self.process_group, False)
output = reduce_forward(output_parallel, self.process_group)
elif self.seq_parallel_mode == "split_gather":
output_parallel = linear_with_async_comm(input_, self.weight, None, self.process_group, False)
output = reducescatter_forward_gather_backward(
output_parallel, self.process_group, self.seq_parallel_dim
)
elif self.seq_parallel_mode == "ring":
output = linear_reducescatter_forward_gather_backward(
input_,
self.weight,
process_group=self.process_group,
dim=self.seq_parallel_dim,
ring=True,
)
if not self.skip_bias_add:
if self.bias is not None:
output = output + self.bias
return output
else:
return output, self.bias
class PaddingLMHead(PaddingParallelModule):
def __init__(
self,
in_features: int,
out_features: int,
bias: bool = True,
dtype: torch.dtype = None,
device: torch.device = None,
weight: Optional[Parameter] = None,
bias_: Optional[Parameter] = None,
make_vocab_size_divisible_by: int = 64,
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
):
# Keep input parameters
self.in_features = in_features
self.out_features = out_features
if out_features % make_vocab_size_divisible_by != 0:
self.out_features = (
out_features + make_vocab_size_divisible_by - (out_features % make_vocab_size_divisible_by)
)
if weight is None:
factory_kwargs = {"device": device, "dtype": dtype}
weight = Parameter(torch.empty(out_features, self.in_features, **factory_kwargs))
else:
weight.data = weight.data.to(device=device, dtype=dtype)
if bias:
if bias_ is None:
self.bias = Parameter(torch.empty(out_features, **factory_kwargs))
else:
bias_.data = bias_.data.to(device=device, dtype=dtype)
else:
bias_ = None
# resize embeddings
super().__init__(self.out_features, out_features, weight, bias_)
if weight is None:
self.reset_parameters(weight_initializer, bias_initializer)
def reset_parameters(self, weight_initializer, bias_initializer) -> None:
fan_in, fan_out = self.in_features, self.out_features
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
if self.bias is not None:
bias_initializer(self.bias, fan_in=fan_in)
@staticmethod
def from_native_module(
module: nn.Linear, process_group: Union[ProcessGroup, List[ProcessGroup]], **kwargs
) -> PaddingParallelModule:
r"""
Convert a native PyTorch linear layer to a parallelized linear layer.
"""
LazyInitContext.materialize(module)
# get the attributes
in_features = module.in_features
out_features = module.out_features
bias = module.bias is not None
device = module.weight.device
# ensure only one process group is passed
lm_head_linear = PaddingLMHead(
in_features=in_features,
out_features=out_features,
bias=bias,
device=device,
weight=module.weight,
bias_=module.bias,
**kwargs,
)
return lm_head_linear
def forward(self, input: Tensor) -> Tensor:
output = F.linear(input, self.weight, self.bias)
output = output[..., : self.old_num_embeddings]
return output
class VocabParallelLMHead1D(Linear1D_Col, PaddingParallelModule):
r"""Linear layer with column parallelism.
The linear layer is defined as :math:`Y = XA + b`. A is parallelized along
its second dimension as :math:`A = [A_1, ..., A_p]`.
Args:
in_features (int): size of each input sample.
out_features (int): size of each output sample.
bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``.
dtype (`torch.dtype`): The dtype of parameters, defaults to None.
device (`torch.device`): The device of parameters, defaults to None.
process_group (`torch.distributed.ProcessGroup`): The process group to be used for weight sharding and communication, defaults to None.
gather_output (bool, optional): If true, call all-gather on output and make Y available
to all GPUs, otherwise, every GPU will have its output
which is :math:`Y_i = XA_i`, defaults to False
seq_parallel (`bool`): If set to ``True``, it will use sequence parallel, defaults to False.
overlap (`bool`): If set to ``True``, it will overlap input all-gather with gradient computation during backward, defaults to False.
skip_bias_add (bool): If set to ``True``, it will skip bias add for linear layer,
which is preserved for kernel fusion, defaults to False
weight_initializer (`typing.Callable`):
The initializer of weight, defaults to kaiming uniform initializer.
bias_initializer (`typing.Callable`):
The initializer of bias, defaults to xavier uniform initializer.
More details about ``initializer`` please refer to
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_.
"""
def __init__(
self,
in_features: int,
out_features: int,
bias: bool = True,
dtype: torch.dtype = None,
device: torch.device = None,
process_group: ProcessGroup = None,
weight: Optional[Parameter] = None,
bias_: Optional[Parameter] = None,
make_vocab_size_divisible_by: int = 64,
**kwargs,
):
# create weight and bias
if weight is None:
factory_kwargs = {"device": device, "dtype": dtype}
weight = Parameter(torch.empty(out_features, self.in_features, **factory_kwargs))
if bias:
if bias_ is None:
bias_ = Parameter(torch.empty(out_features, **factory_kwargs))
else:
bias_ = None
# calculate new vocab size
self.tensor_parallel_size = dist.get_world_size(group=process_group)
new_out_features = out_features
multiple = make_vocab_size_divisible_by * self.tensor_parallel_size
if out_features % multiple != 0:
new_out_features = out_features + multiple - (out_features % multiple)
super().__init__(
in_features=in_features,
out_features=new_out_features,
bias=bias,
device=device,
process_group=process_group,
weight=weight,
bias_=bias_,
**kwargs,
new_num_embeddings=new_out_features,
old_num_embeddings=out_features,
)
# get the length of valid embeddings
tp_rank = dist.get_rank(process_group)
partition_size = self.new_num_embeddings // dist.get_world_size(process_group)
if self.old_num_embeddings >= (tp_rank + 1) * partition_size:
self.num_valid_embeddings_local = partition_size
elif self.old_num_embeddings >= tp_rank * partition_size:
self.num_valid_embeddings_local = self.old_num_embeddings - tp_rank * partition_size
else:
self.num_valid_embeddings_local = 0
@staticmethod
def from_native_module(
module: nn.Linear, process_group: Union[ProcessGroup, List[ProcessGroup]], **kwargs
) -> PaddingParallelModule:
r"""
Convert a native PyTorch linear layer to a parallelized linear layer.
"""
LazyInitContext.materialize(module)
# get the attributes
in_features = module.in_features
out_features = module.out_features
bias = module.bias is not None
device = module.weight.device
lm_head_linear = VocabParallelLMHead1D(
in_features=in_features,
out_features=out_features,
bias=bias,
device=device,
process_group=process_group,
weight=module.weight,
bias_=module.bias,
**kwargs,
)
return lm_head_linear
def forward(self, input_: Tensor) -> Tuple[Tensor, Tensor]:
# get forward output
if self.skip_bias_add:
output, bias = super().forward(input_)
else:
output = super().forward(input_)
# delete the padding of output
if self.gather_output:
output = output[..., : self.old_num_embeddings]
else:
output = output[..., : self.num_valid_embeddings_local]
# return
if self.skip_bias_add:
return output, bias
return output