ColossalAI/colossalai/nn/optimizer/fused_lamb.py

226 lines
8.8 KiB
Python

# modified from https://github.com/NVIDIA/apex/blob/master/apex/optimizers/fused_lamb.py
import torch
from colossalai.utils import multi_tensor_applier
class FusedLAMB(torch.optim.Optimizer):
"""Implements LAMB algorithm.
`FusedLAMB` requires CUDA extensions which can be built during installation or runtime.
This version of fused LAMB implements 2 fusions.
* Fusion of the LAMB update's elementwise operations
* A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches.
:class:`colossalai.nn.optimizer.FusedLAMB`'s usage is identical to any ordinary Pytorch optimizer
:class:`colossalai.nn.optimizer.FusedLAMB` may be used with or without Amp.
LAMB was proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups.
lr (float, optional): learning rate. (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its norm. (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability. (default: 1e-6)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0.01)
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
NOT SUPPORTED now! (default: False)
adam_w_mode (boolean, optional): Apply L2 regularization or weight decay
True for decoupled weight decay(also known as AdamW) (default: True)
grad_averaging (bool, optional): whether apply (1-beta2) to grad when
calculating running averages of gradient. (default: True)
set_grad_none (bool, optional): whether set grad to None when zero_grad()
method is called. (default: True)
max_grad_norm (float, optional): value used to clip global grad norm
(default: 1.0)
use_nvlamb (boolean, optional): Apply adaptive learning rate to 0.0
weight decay parameter (default: False)
.. _Large Batch Optimization for Deep Learning: Training BERT in 76 minutes:
https://arxiv.org/abs/1904.00962
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
"""
def __init__(
self,
params,
lr=1e-3,
bias_correction=True,
betas=(0.9, 0.999),
eps=1e-6,
weight_decay=0.01,
amsgrad=False,
adam_w_mode=True,
grad_averaging=True,
set_grad_none=True,
max_grad_norm=1.0,
use_nvlamb=False,
):
if amsgrad:
raise RuntimeError("FusedLAMB does not support the AMSGrad variant.")
defaults = dict(
lr=lr,
bias_correction=bias_correction,
betas=betas,
eps=eps,
weight_decay=weight_decay,
grad_averaging=grad_averaging,
max_grad_norm=max_grad_norm,
)
super(FusedLAMB, self).__init__(params, defaults)
if multi_tensor_applier.available:
from colossalai.kernel.kernel_loader import FusedOptimizerLoader
fused_optim = FusedOptimizerLoader().load()
self.multi_tensor_l2norm = fused_optim.multi_tensor_l2norm
# Skip buffer
self._dummy_overflow_buf = torch.tensor(
[0], dtype=torch.int, device=self.param_groups[0]["params"][0].device
)
self.multi_tensor_lamb = fused_optim.multi_tensor_lamb
else:
raise RuntimeError("FusedLAMB requires cuda extensions")
self.adam_w_mode = 1 if adam_w_mode else 0
self.set_grad_none = set_grad_none
self.use_nvlamb = use_nvlamb
def zero_grad(self):
if self.set_grad_none:
for group in self.param_groups:
for p in group["params"]:
p.grad = None
else:
super(FusedLAMB, self).zero_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
# create separate grad lists for fp32 and fp16 params
g_all_32, g_all_16 = [], []
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
if p.dtype == torch.float32:
g_all_32.append(p.grad.data)
elif p.dtype == torch.float16:
g_all_16.append(p.grad.data)
else:
raise RuntimeError("FusedLAMB only support fp16 and fp32.")
device = self.param_groups[0]["params"][0].device
g_norm_32, g_norm_16 = torch.zeros(1, device=device), torch.zeros(1, device=device)
# compute grad norm for two lists
if len(g_all_32) > 0:
g_norm_32 = multi_tensor_applier(self.multi_tensor_l2norm, self._dummy_overflow_buf, [g_all_32], False)[0]
if len(g_all_16) > 0:
g_norm_16 = multi_tensor_applier(self.multi_tensor_l2norm, self._dummy_overflow_buf, [g_all_16], False)[0]
# blend two grad norms to get global grad norm
global_grad_norm = multi_tensor_applier(
self.multi_tensor_l2norm, self._dummy_overflow_buf, [[g_norm_32, g_norm_16]], False
)[0]
max_grad_norm = self.defaults["max_grad_norm"]
for group in self.param_groups:
bias_correction = 1 if group["bias_correction"] else 0
beta1, beta2 = group["betas"]
grad_averaging = 1 if group["grad_averaging"] else 0
# assume same step across group now to simplify things
# per parameter step can be easily support by making it tensor, or pass list into kernel
if "step" in group:
group["step"] += 1
else:
group["step"] = 1
# create lists for multi-tensor apply
g_16, p_16, m_16, v_16 = [], [], [], []
g_32, p_32, m_32, v_32 = [], [], [], []
for p in group["params"]:
if p.grad is None:
continue
if p.grad.data.is_sparse:
raise RuntimeError(
"FusedLAMB does not support sparse gradients, please consider SparseAdam instead"
)
state = self.state[p]
# State initialization
if len(state) == 0:
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(p)
# Exponential moving average of gradient values
state["exp_avg_sq"] = torch.zeros_like(p)
if p.dtype == torch.float16:
g_16.append(p.grad.data)
p_16.append(p.data)
m_16.append(state["exp_avg"])
v_16.append(state["exp_avg_sq"])
elif p.dtype == torch.float32:
g_32.append(p.grad.data)
p_32.append(p.data)
m_32.append(state["exp_avg"])
v_32.append(state["exp_avg_sq"])
else:
raise RuntimeError("FusedLAMB only support fp16 and fp32.")
if len(g_16) > 0:
multi_tensor_applier(
self.multi_tensor_lamb,
self._dummy_overflow_buf,
[g_16, p_16, m_16, v_16],
group["lr"],
beta1,
beta2,
group["eps"],
group["step"],
bias_correction,
group["weight_decay"],
grad_averaging,
self.adam_w_mode,
global_grad_norm,
max_grad_norm,
self.use_nvlamb,
)
if len(g_32) > 0:
multi_tensor_applier(
self.multi_tensor_lamb,
self._dummy_overflow_buf,
[g_32, p_32, m_32, v_32],
group["lr"],
beta1,
beta2,
group["eps"],
group["step"],
bias_correction,
group["weight_decay"],
grad_averaging,
self.adam_w_mode,
global_grad_norm,
max_grad_norm,
self.use_nvlamb,
)
return loss