ColossalAI/colossalai/legacy/utils/activation_checkpoint.py

261 lines
9.6 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import weakref
import torch
from torch.utils.checkpoint import check_backward_validity, detach_variable
from colossalai.accelerator import get_accelerator
from colossalai.legacy.context.random import get_current_mode, get_states, set_mode, set_seed_states, sync_states
def copy_to_device(obj, device):
if torch.is_tensor(obj):
# Notice:
# When in no_grad context, requires_gard is False after movement
ret = obj.to(device).detach()
ret.requires_grad = obj.requires_grad
return ret
elif isinstance(obj, list):
return [copy_to_device(i, device) for i in obj]
elif isinstance(obj, tuple):
return tuple([copy_to_device(v, device) for v in obj])
elif isinstance(obj, dict):
return {k: copy_to_device(v, device) for k, v in obj.items()}
else:
return obj
class CheckpointFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, run_function, activation_offload=False, *args):
check_backward_validity(args)
ctx.run_function = run_function
ctx.activation_offload = activation_offload
ctx.device = get_accelerator().get_current_device()
# preserve rng states
ctx.fwd_cpu_rng_state = torch.get_rng_state()
sync_states()
ctx.fwd_seed_states = get_states(copy=True)
ctx.fwd_current_mode = get_current_mode()
if hasattr(torch, "is_autocast_enabled"):
ctx.had_autocast_in_fwd = torch.is_autocast_enabled()
else:
ctx.had_autocast_in_fwd = False
if activation_offload:
inputs_cuda = copy_to_device(args, ctx.device)
else:
inputs_cuda = args
with torch.no_grad():
outputs = run_function(*inputs_cuda)
# Save non-tensor inputs in ctx, keep a placeholder None for tensors
# to be filled out during the backward.
ctx.inputs = []
ctx.tensor_indices = []
tensor_inputs = []
for i, arg in enumerate(args):
if torch.is_tensor(arg):
if activation_offload:
tensor_inputs.append(copy_to_device(arg, "cpu"))
else:
tensor_inputs.append(arg)
ctx.tensor_indices.append(i)
ctx.inputs.append(None)
else:
ctx.inputs.append(arg)
if activation_offload:
ctx.tensor_inputs = tensor_inputs
else:
ctx.save_for_backward(*tensor_inputs)
return outputs
@staticmethod
def backward(ctx, *args):
if not torch.autograd._is_checkpoint_valid():
raise RuntimeError(
"Checkpointing is not compatible with .grad() or when an `inputs` parameter is "
"passed to .backward(). Please use .backward() and do not pass its `inputs` argument."
)
# Copy the list to avoid modifying original list.
inputs = list(ctx.inputs)
tensor_indices = ctx.tensor_indices
if ctx.activation_offload:
tensors = ctx.tensor_inputs
else:
tensors = ctx.saved_tensors
# store the current states
bwd_cpu_rng_state = torch.get_rng_state()
sync_states()
bwd_seed_states = get_states(copy=True)
bwd_current_mode = get_current_mode()
# set the states to what it used to be
torch.set_rng_state(ctx.fwd_cpu_rng_state)
for parallel_mode, state in ctx.fwd_seed_states.items():
set_seed_states(parallel_mode, state)
set_mode(ctx.fwd_current_mode)
if ctx.activation_offload:
tensors = copy_to_device(tensors, ctx.device)
# Fill in inputs with appropriate saved tensors.
for i, idx in enumerate(tensor_indices):
inputs[idx] = tensors[i]
detached_inputs = detach_variable(tuple(inputs))
if ctx.had_autocast_in_fwd:
with torch.enable_grad(), get_accelerator().autocast()():
outputs = ctx.run_function(*detached_inputs)
else:
with torch.enable_grad():
outputs = ctx.run_function(*detached_inputs)
if isinstance(outputs, torch.Tensor):
outputs = (outputs,)
# recover the rng states
torch.set_rng_state(bwd_cpu_rng_state)
for parallel_mode, state in bwd_seed_states.items():
set_seed_states(parallel_mode, state)
set_mode(bwd_current_mode)
# run backward() with only tensor that requires grad
outputs_with_grad = []
args_with_grad = []
for i in range(len(outputs)):
if torch.is_tensor(outputs[i]) and outputs[i].requires_grad:
outputs_with_grad.append(outputs[i])
args_with_grad.append(args[i])
if len(outputs_with_grad) == 0:
raise RuntimeError("none of output has requires_grad=True," " this checkpoint() is not necessary")
torch.autograd.backward(outputs_with_grad, args_with_grad)
grads = tuple(inp.grad if isinstance(inp, torch.Tensor) else None for inp in detached_inputs)
return (None, None) + grads
def checkpoint(function, activation_offload, *args, use_reentrant: bool = True):
"""Checkpoint the computation while preserve the rng states, modified from Pytorch torch.utils.checkpoint.
Args:
function: Describe the forward pass function. It should know how to handle the input tuples.
activation_offload: The variable to check whether we should offload activation to cpu
args (list): Tuple containing the parameters of the function
use_reentrant: Bool type to check if we need to use_reentrant, if use_reentrant=False, there
might be more flexibility for user to define there checkpoint function
Returns:
Output of running function with provided args.
"""
if use_reentrant:
return CheckpointFunction.apply(function, activation_offload, *args)
else:
return _checkpoint_without_reentrant(
function,
activation_offload,
*args,
)
def _checkpoint_without_reentrant(function, activation_offload=False, *args):
# store rng_state
fwd_cpu_state = torch.get_rng_state()
sync_states()
fwd_seed_states = get_states(copy=True)
fwd_current_mode = get_current_mode()
# check if use autocast
if hasattr(torch, "is_autocast_enabled"):
has_autocast_in_fwd = torch.is_autocast_enabled()
else:
has_autocast_in_fwd = False
# using WeakKeyDictionary to store all the activation the first time we call unpack
storage: weakref.WeakKeyDictionary = weakref.WeakKeyDictionary()
weak_holder_list = []
# class for weakref.ref
class Holder:
pass
# return a Holder object for later unpack process
def pack(x):
res = Holder()
weak_holder_list.append(weakref.ref(res))
return res
# unpack hook
def unpack(x):
unpack_counter = 0
# re-compute all the activation inside the function when we first call unpack
if len(storage) == 0:
def inner_pack(inner):
nonlocal unpack_counter
unpack_counter += 1
# If the holder went out of scope, the SavedVariable is dead and so
# the value will never be read from the storage. Skip filling it.
if weak_holder_list[unpack_counter - 1]() is None:
return
# Use detach here to ensure we don't keep the temporary autograd
# graph created during the second forward
storage[weak_holder_list[unpack_counter - 1]()] = inner.detach()
return
def inner_unpack(packed):
raise RuntimeError("You are calling backwards on a tensor that is never exposed. Please open an issue.")
# restore rng state
torch.set_rng_state(fwd_cpu_state)
for parallel_mode, state in fwd_seed_states.items():
set_seed_states(parallel_mode, state)
set_mode(fwd_current_mode)
# reload arg into device if needed
if activation_offload:
for arg in args:
if torch.is_tensor(arg):
arg = arg.to(device=device)
# rerun forward, the inner_pack will store all the activations in storage
if has_autocast_in_fwd:
with torch.enable_grad(), get_accelerator().autocast()(), torch.autograd.graph.saved_tensors_hooks(
inner_pack, inner_unpack
):
_unused = function(*args)
else:
with torch.enable_grad(), torch.autograd.graph.saved_tensors_hooks(inner_pack, inner_unpack):
_unused = function(*args)
if x not in storage:
raise RuntimeError(
"Attempt to retrieve a tensor saved by autograd multiple times without checkpoint"
" recomputation being triggered in between, this is not currently supported. Please"
" open an issue with details on your use case so that we can prioritize adding this."
)
return storage[x]
# get device if we need to offload the activation
if activation_offload:
device = get_accelerator().get_current_device()
# run function with pack and unpack as saved_tensors_hooks
with torch.autograd.graph.saved_tensors_hooks(pack, unpack):
output = function(*args)
# offload activation if needed
if activation_offload:
for arg in args:
if torch.is_tensor(arg):
arg = arg.to(device="cpu")
return output