mirror of https://github.com/hpcaitech/ColossalAI
45 lines
1.5 KiB
Python
45 lines
1.5 KiB
Python
from typing import Optional
|
|
|
|
import torch.nn as nn
|
|
from torch.nn.modules.loss import _Loss
|
|
from torch.optim import Optimizer
|
|
|
|
from colossalai.context import Config
|
|
|
|
from .torch_amp import TorchAMPLoss, TorchAMPModel, TorchAMPOptimizer
|
|
|
|
|
|
def convert_to_torch_amp(
|
|
model: nn.Module, optimizer: Optimizer, criterion: Optional[_Loss] = None, amp_config: Optional[Config] = None
|
|
):
|
|
"""A helper function to wrap training components with Pytorch AMP modules
|
|
|
|
Args:
|
|
model (:class:`torch.nn.Module`): your model object.
|
|
optimizer (:class:`torch.optim.Optimizer`): your optimizer object
|
|
criterion (:class:`torch.nn.modules.loss._Loss`, optional): your loss function object
|
|
amp_config (:class:`colossalai.context.Config` or dict, optional): configuration for Pytorch AMP.
|
|
|
|
The ``amp_config`` should include parameters below:
|
|
::
|
|
|
|
init_scale (float, optional, default=2.**16)
|
|
growth_factor (float, optional, default=2.0)
|
|
backoff_factor (float, optional, default=0.5)
|
|
growth_interval (int, optional, default=2000)
|
|
enabled (bool, optional, default=True)
|
|
|
|
Returns:
|
|
A tuple (model, optimizer, criterion)
|
|
"""
|
|
model = TorchAMPModel(model)
|
|
if amp_config is None:
|
|
amp_config = dict()
|
|
optimizer = TorchAMPOptimizer(optimizer, **amp_config)
|
|
if criterion:
|
|
criterion = TorchAMPLoss(criterion)
|
|
return model, optimizer, criterion
|
|
|
|
|
|
__all__ = ["convert_to_torch_amp", "TorchAMPModel", "TorchAMPLoss", "TorchAMPOptimizer"]
|