ColossalAI/colossalai/legacy/amp/torch_amp/__init__.py

45 lines
1.5 KiB
Python

from typing import Optional
import torch.nn as nn
from torch.nn.modules.loss import _Loss
from torch.optim import Optimizer
from colossalai.context import Config
from .torch_amp import TorchAMPLoss, TorchAMPModel, TorchAMPOptimizer
def convert_to_torch_amp(
model: nn.Module, optimizer: Optimizer, criterion: Optional[_Loss] = None, amp_config: Optional[Config] = None
):
"""A helper function to wrap training components with Pytorch AMP modules
Args:
model (:class:`torch.nn.Module`): your model object.
optimizer (:class:`torch.optim.Optimizer`): your optimizer object
criterion (:class:`torch.nn.modules.loss._Loss`, optional): your loss function object
amp_config (:class:`colossalai.context.Config` or dict, optional): configuration for Pytorch AMP.
The ``amp_config`` should include parameters below:
::
init_scale (float, optional, default=2.**16)
growth_factor (float, optional, default=2.0)
backoff_factor (float, optional, default=0.5)
growth_interval (int, optional, default=2000)
enabled (bool, optional, default=True)
Returns:
A tuple (model, optimizer, criterion)
"""
model = TorchAMPModel(model)
if amp_config is None:
amp_config = dict()
optimizer = TorchAMPOptimizer(optimizer, **amp_config)
if criterion:
criterion = TorchAMPLoss(criterion)
return model, optimizer, criterion
__all__ = ["convert_to_torch_amp", "TorchAMPModel", "TorchAMPLoss", "TorchAMPOptimizer"]