ColossalAI/colossalai/fx/profiler/experimental/profiler_module/normalization.py

44 lines
1.5 KiB
Python

# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
from typing import Tuple, Union
import torch
from ..registry import meta_profiler_module
@meta_profiler_module.register(torch.nn.InstanceNorm1d)
@meta_profiler_module.register(torch.nn.InstanceNorm2d)
@meta_profiler_module.register(torch.nn.InstanceNorm3d)
@meta_profiler_module.register(torch.nn.LayerNorm)
@meta_profiler_module.register(torch.nn.GroupNorm)
@meta_profiler_module.register(torch.nn.BatchNorm1d)
@meta_profiler_module.register(torch.nn.BatchNorm2d)
@meta_profiler_module.register(torch.nn.BatchNorm3d)
def torch_nn_normalize(
self: Union[
torch.nn.LayerNorm, torch.nn.GroupNorm, torch.nn.BatchNorm1d, torch.nn.BatchNorm2d, torch.nn.BatchNorm3d
],
input: torch.Tensor,
) -> Tuple[int, int]:
# adopted from https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/profiling/flops_profiler/profiler.py#L615
has_affine = self.weight is not None
if self.training:
flops = input.numel() * (2 if has_affine else 1)
else:
flops = input.numel() * (5 if has_affine else 4)
macs = 0
return flops, macs
try:
import apex
meta_profiler_module.register(apex.normalization.FusedLayerNorm)(torch_nn_normalize)
meta_profiler_module.register(apex.normalization.FusedRMSNorm)(torch_nn_normalize)
meta_profiler_module.register(apex.normalization.MixedFusedLayerNorm)(torch_nn_normalize)
meta_profiler_module.register(apex.normalization.MixedFusedRMSNorm)(torch_nn_normalize)
except (ImportError, AttributeError):
pass