ColossalAI/colossalai/fx/passes/concrete_info_prop.py

295 lines
12 KiB
Python

from dataclasses import asdict
from typing import Any, Dict, List, Optional, Tuple
import torch
import torch.fx
from torch.fx.node import Argument, Node, Target
from torch.utils._pytree import tree_flatten
from colossalai.fx._compatibility import compatibility
from colossalai.fx.profiler import GraphInfo, profile_function, profile_method, profile_module
@compatibility(is_backward_compatible=True)
class ConcreteInfoProp(torch.fx.Interpreter):
"""
Execute an FX graph Node-by-Node with concrete tensor and record the memory
usage, execution time of forward and backward, and type of the result into
the corresponding node.
Usage:
BATCH_SIZE = 2
DIM_IN = 4
DIM_HIDDEN = 16
DIM_OUT = 16
model = torch.nn.Sequential(
torch.nn.Linear(DIM_IN, DIM_HIDDEN),
torch.nn.Linear(DIM_HIDDEN, DIM_OUT),
).cuda()
input_sample = torch.rand(BATCH_SIZE, DIM_IN, device="cuda")
gm = symbolic_trace(model)
interp = ConcreteInfoProp(gm)
interp.run(input_sample)
print(interp.summary(unit='kb'))
output of above code is
Op type Op Forward time Backward time SAVE_FWD_IN FWD_OUT FWD_TMP BWD_OUT BWD_TMP
----------- ------- ----------------------- ------------------------ ------------- --------- --------- --------- ---------
placeholder input_1 0.0 s 0.0 s False 0.00 KB 0.00 KB 0.00 KB 0.00 KB
call_module _0 0.0003993511199951172 s 0.00706791877746582 s False 0.50 KB 0.00 KB 0.03 KB 0.66 KB
call_module _1 6.29425048828125e-05 s 0.00018286705017089844 s False 0.50 KB 0.00 KB 0.12 KB 0.81 KB
output output 0.0 s 0.0 s True 0.00 KB 0.00 KB 0.00 KB 0.00 KB
Args:
module (GraphModule): The module to be executed
"""
_is_proped: bool = False
def run(self, *args, initial_env: Optional[Dict[Node, Any]] = None, enable_io_processing: bool = True) -> Any:
"""Customized run for ConcreteInfoProp
We need to store the device in self.device
Args:
*args: The arguments to the Module to run, in positional order
initial_env (Optional[Dict[Node, Any]]): An optional starting environment for execution.
This is a dict mapping `Node` to any value. This can be used, for example, to
pre-populate results for certain `Nodes` so as to do only partial evaluation within
the interpreter.
enable_io_processing (bool): If true, we process the inputs and outputs with graph's process_inputs and
process_outputs function first before using them.
Returns:
Any: The value returned from executing the Module
"""
flatten_args, _ = tree_flatten(args)
self.device = next(item for item in flatten_args if hasattr(item, "device")).device
return super().run(*args, initial_env, enable_io_processing)
@compatibility(is_backward_compatible=True)
def run_node(self, n: Node) -> Any:
"""
Run a specific node ``n`` and return the result.
Calls into placeholder, get_attr, call_function,
call_method, call_module, or output depending
on ``node.op``
Args:
n (Node): The Node to execute
Returns:
Any: The result of executing ``n``
"""
self._is_proped = True
result, meta_info = super().run_node(n)
n.meta = {**n.meta, **asdict(meta_info)} # extend MetaInfo to `n.meta`
# TODO: the attribute node_size should be removed in the future
setattr(n, "node_size", n.meta.get("fwd_mem_tmp", 0) + n.meta.get("fwd_mem_out", 0))
n.meta["type"] = type(result)
# retain the autograd graph
for param in self.module.parameters():
param.grad = None
return result
# Main Node running APIs
@compatibility(is_backward_compatible=True)
def placeholder(self, target: "Target", args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
"""
Execute a ``placeholder`` node. Note that this is stateful:
``Interpreter`` maintains an internal iterator over
arguments passed to ``run`` and this method returns
next() on that iterator.
Args:
target (Target): The call target for this node. See
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
details on semantics
args (Tuple): Tuple of positional args for this invocation
kwargs (Dict): Dict of keyword arguments for this invocation
Returns:
result (Any): The argument value that was retrieved
meta_info (MetaInfo): The memory cost and forward & backward time.
"""
return super().placeholder(target, args, kwargs), GraphInfo()
@compatibility(is_backward_compatible=True)
def get_attr(self, target: "Target", args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
"""
Execute a ``get_attr`` node. Will retrieve an attribute
value from the ``Module`` hierarchy of ``self.module``.
Args:
target (Target): The call target for this node. See
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
details on semantics
args (Tuple): Tuple of positional args for this invocation
kwargs (Dict): Dict of keyword arguments for this invocation
Return:
result (Any): The argument value that was retrieved
meta_info (MetaInfo): The memory cost and FLOPs estimated with `MetaTensor`.
"""
return super().get_attr(target, args, kwargs), GraphInfo()
@compatibility(is_backward_compatible=True)
def call_function(self, target: "Target", args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
"""
Execute a ``call_function`` node with meta tensor and return the result and its meta profile.
Args:
target (Target): The call target for this node. See
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
details on semantics
args (Tuple): Tuple of positional args for this invocation
kwargs (Dict): Dict of keyword arguments for this invocation
Return
result (Any): The argument value that was retrieved
meta_info (MetaInfo): The memory cost and forward & backward time.
"""
assert not isinstance(target, str)
return profile_function(target, self.device)(*args, **kwargs)
@compatibility(is_backward_compatible=True)
def call_method(self, target: "Target", args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
"""
Execute a ``call_method`` node with meta tensor and return the result and its meta profile.
Args:
target (Target): The call target for this node. See
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
details on semantics
args (Tuple): Tuple of positional args for this invocation
kwargs (Dict): Dict of keyword arguments for this invocation
Return
result (Any): The argument value that was retrieved
meta_info (MetaInfo): The memory cost and forward & backward time.
"""
return profile_method(target, self.device)(*args, **kwargs)
@compatibility(is_backward_compatible=True)
def call_module(self, target: "Target", args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
"""
Execute a ``call_module`` node with meta tensor and return the result and its meta profile.
Args:
target (Target): The call target for this node. See
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
details on semantics
args (Tuple): Tuple of positional args for this invocation
kwargs (Dict): Dict of keyword arguments for this invocation
Return
result (Any): The argument value that was retrieved
meta_info (MetaInfo): The memory cost and forward & backward time.
"""
# Retrieve executed args and kwargs values from the environment
# Execute the method and return the result
assert isinstance(target, str)
submod = self.fetch_attr(target)
return profile_module(submod, self.device)(*args, **kwargs)
@compatibility(is_backward_compatible=True)
def output(self, target: "Target", args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
"""
Execute an ``output`` node. This really just retrieves
the value referenced by the ``output`` node and returns it.
Args:
target (Target): The call target for this node. See
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
details on semantics
args (Tuple): Tuple of positional args for this invocation
kwargs (Dict): Dict of keyword arguments for this invocation
Return:
result (Any): The argument value that was retrieved
meta_info (MetaInfo): The memory cost and forward & backward time.
"""
return args[0], GraphInfo(save_fwd_in=True)
def propagate(self, *args):
"""
Run `module` via interpretation and return the result and
record the shape and type of each node.
Args:
*args (Tensor): the sample input.
Returns:
Any: The value returned from executing the Module
"""
return self.run(*args)
def summary(self, unit: str = "MB") -> str:
"""
Summarizes the memory and FLOPs statistics of the `GraphModule` in
tabular format. Note that this API requires the ``tabulate`` module
to be installed.
"""
# https://github.com/pytorch/pytorch/blob/master/torch/fx/graph.py
try:
from tabulate import tabulate
except ImportError:
print(
"`summary` relies on the library `tabulate`, "
"which could not be found on this machine. Run `pip "
"install tabulate` to install the library."
)
assert self._is_proped, "Please call `interp.run(input)` before calling `interp.summary()`."
# Build up a list of summary information for each node
node_summaries: List[List[Any]] = []
def mem_repr(mem: int) -> str:
unit_divisor_map = {
"kb": 1024,
"mb": 1024**2,
"gb": 1024**3,
"tb": 1024**4,
}
return f"{mem / unit_divisor_map[unit.lower()]:.2f} {unit.upper()}"
def time_repr(time: float):
return f"{time:,} s"
for node in self.module.graph.nodes:
node: Node
node_summaries.append(
[
node.op,
str(node),
time_repr(node.meta["fwd_time"]),
time_repr(node.meta["bwd_time"]),
node.meta["save_fwd_in"],
mem_repr(node.meta["fwd_mem_out"]),
mem_repr(node.meta["fwd_mem_tmp"]),
mem_repr(node.meta["bwd_mem_out"]),
mem_repr(node.meta["bwd_mem_tmp"]),
]
)
# Use the ``tabulate`` library to create a well-formatted table
# presenting our summary information
headers: List[str] = [
"Op type",
"Op",
"Forward time",
"Backward time",
"SAVE_FWD_IN",
"FWD_OUT",
"FWD_TMP",
"BWD_OUT",
"BWD_TMP",
]
return tabulate(node_summaries, headers=headers, stralign="right")