mirror of https://github.com/hpcaitech/ColossalAI
258 lines
9.5 KiB
Python
258 lines
9.5 KiB
Python
from typing import Callable, Dict, Iterator, List, Optional, Tuple, Union
|
|
|
|
import torch.nn as nn
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from torch.optim import Optimizer
|
|
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
|
|
from torch.utils.data import DataLoader
|
|
|
|
from colossalai.checkpoint_io import CheckpointIO, GeneralCheckpointIO
|
|
from colossalai.cluster import DistCoordinator
|
|
from colossalai.interface import ModelWrapper, OptimizerWrapper
|
|
from colossalai.quantization import BnbQuantizationConfig, quantize_model
|
|
from colossalai.utils import get_current_device
|
|
|
|
from .dp_plugin_base import DPPluginBase
|
|
|
|
__all__ = ["TorchDDPPlugin"]
|
|
|
|
|
|
class TorchDDPCheckpointIO(GeneralCheckpointIO):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.coordinator = DistCoordinator()
|
|
|
|
def load_unsharded_model(self, model: ModelWrapper, checkpoint: str, strict: bool = True):
|
|
"""
|
|
Load model from checkpoint.
|
|
"""
|
|
assert isinstance(model, ModelWrapper), "Please boost the model before loading!"
|
|
super().load_unsharded_model(model.unwrap(), checkpoint, strict=strict)
|
|
|
|
def save_unsharded_model(self, model: ModelWrapper, checkpoint: str, gather_dtensor: bool, use_safetensors: bool):
|
|
"""
|
|
Save model to checkpoint but only on master process.
|
|
"""
|
|
assert isinstance(model, ModelWrapper), "Please boost the model before saving!"
|
|
if self.coordinator.is_master():
|
|
super().save_unsharded_model(model.unwrap(), checkpoint, gather_dtensor, use_safetensors)
|
|
|
|
def load_unsharded_optimizer(self, optimizer: OptimizerWrapper, checkpoint: str):
|
|
"""
|
|
Load optimizer from checkpoint.
|
|
"""
|
|
assert isinstance(optimizer, OptimizerWrapper), "Please boost the optimizer before loading!"
|
|
super().load_unsharded_optimizer(optimizer, checkpoint)
|
|
|
|
def save_unsharded_optimizer(self, optimizer: OptimizerWrapper, checkpoint: str, gather_dtensor: bool):
|
|
"""
|
|
Save optimizer to checkpoint but only on master process.
|
|
"""
|
|
assert isinstance(optimizer, OptimizerWrapper), "Please boost the optimizer before saving!"
|
|
if self.coordinator.is_master():
|
|
super().save_unsharded_optimizer(optimizer, checkpoint, gather_dtensor)
|
|
|
|
def save_lr_scheduler(self, lr_scheduler: LRScheduler, checkpoint: str):
|
|
"""
|
|
Save model to checkpoint but only on master process.
|
|
"""
|
|
if self.coordinator.is_master():
|
|
super().save_lr_scheduler(lr_scheduler, checkpoint)
|
|
|
|
def save_sharded_model(
|
|
self,
|
|
model: ModelWrapper,
|
|
checkpoint_path: str,
|
|
gather_dtensor: bool = True,
|
|
prefix: Optional[str] = None,
|
|
max_shard_size: int = 1024,
|
|
use_safetensors: bool = False,
|
|
):
|
|
"""
|
|
Save model to checkpoint but only on master process.
|
|
"""
|
|
assert isinstance(model, ModelWrapper), "Please boost the model before saving!"
|
|
if self.coordinator.is_master():
|
|
super().save_sharded_model(
|
|
model.unwrap(), checkpoint_path, gather_dtensor, prefix, max_shard_size, use_safetensors
|
|
)
|
|
|
|
def load_sharded_model(
|
|
self,
|
|
model: ModelWrapper,
|
|
checkpoint_index_file: str,
|
|
strict: bool = False,
|
|
use_safetensors: bool = False,
|
|
load_sub_module: bool = True,
|
|
):
|
|
"""
|
|
Load model from sharded checkpoint.
|
|
"""
|
|
assert isinstance(model, ModelWrapper), "Please boost the model before loading!"
|
|
super().load_sharded_model(model.unwrap(), checkpoint_index_file, strict, use_safetensors, load_sub_module)
|
|
|
|
def save_sharded_optimizer(
|
|
self,
|
|
optimizer: OptimizerWrapper,
|
|
checkpoint: str,
|
|
gather_dtensor: bool = True,
|
|
prefix: Optional[str] = None,
|
|
size_per_shard: int = 1024,
|
|
):
|
|
"""
|
|
Save optimizer to sharded checkpoint but only on master process.
|
|
"""
|
|
assert isinstance(optimizer, OptimizerWrapper), "Please boost the optimizer before saving!"
|
|
if self.coordinator.is_master():
|
|
super().save_sharded_optimizer(optimizer.unwrap(), checkpoint, gather_dtensor, prefix, size_per_shard)
|
|
|
|
def load_sharded_optimizer(
|
|
self,
|
|
optimizer: Optimizer,
|
|
index_file_path: str,
|
|
prefix: Optional[str] = None,
|
|
):
|
|
"""
|
|
Load optimizer from sharded checkpoint.
|
|
"""
|
|
assert isinstance(optimizer, OptimizerWrapper), "Please boost the optimizer before loading!"
|
|
super().load_sharded_optimizer(optimizer.unwrap(), index_file_path, prefix)
|
|
|
|
def save_lora_as_pretrained(
|
|
self, model: Union[nn.Module, ModelWrapper], checkpoint: str, use_safetensors: bool = False
|
|
) -> None:
|
|
"""
|
|
Save the lora adapters and adapter configuration file to checkpoint directory.
|
|
"""
|
|
from peft import PeftModel
|
|
|
|
assert isinstance(model, ModelWrapper), "Please boost the model before saving!"
|
|
if self.coordinator.is_master():
|
|
peft_model = model.unwrap()
|
|
assert isinstance(
|
|
peft_model, PeftModel
|
|
), "The model doesn't have lora adapters, please enable lora before saving."
|
|
peft_model.save_pretrained(save_directory=checkpoint, safe_serialization=use_safetensors)
|
|
|
|
|
|
class TorchDDPModel(ModelWrapper):
|
|
def __init__(self, module: nn.Module, *args, **kwargs) -> None:
|
|
super().__init__(module)
|
|
self.module = DDP(module, *args, **kwargs)
|
|
|
|
def unwrap(self):
|
|
return self.module.module
|
|
|
|
|
|
class TorchDDPPlugin(DPPluginBase):
|
|
"""
|
|
Plugin for PyTorch DDP.
|
|
|
|
```python
|
|
from colossalai.booster import Booster
|
|
from colossalai.booster.plugin import TorchDDPPlugin
|
|
|
|
model, train_dataset, optimizer, criterion = ...
|
|
plugin = TorchDDPPlugin()
|
|
|
|
train_dataloader = plugin.prepare_dataloader(train_dataset, batch_size=8)
|
|
booster = Booster(plugin=plugin)
|
|
model, optimizer, train_dataloader, criterion = booster.boost(model, optimizer, train_dataloader, criterion)
|
|
```
|
|
|
|
Args:
|
|
broadcast_buffers (bool, optional): Whether to broadcast buffers in the beginning of training. Defaults to True.
|
|
bucket_cap_mb (int, optional): The bucket size in MB. Defaults to 25.
|
|
find_unused_parameters (bool, optional): Whether to find unused parameters. Defaults to False.
|
|
check_reduction (bool, optional): Whether to check reduction. Defaults to False.
|
|
gradient_as_bucket_view (bool, optional): Whether to use gradient as bucket view. Defaults to False.
|
|
static_graph (bool, optional): Whether to use static graph. Defaults to False.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
broadcast_buffers: bool = True,
|
|
bucket_cap_mb: int = 25,
|
|
find_unused_parameters: bool = False,
|
|
check_reduction: bool = False,
|
|
gradient_as_bucket_view: bool = False,
|
|
static_graph: bool = False,
|
|
) -> None:
|
|
super().__init__()
|
|
self.ddp_kwargs = dict(
|
|
broadcast_buffers=broadcast_buffers,
|
|
bucket_cap_mb=bucket_cap_mb,
|
|
find_unused_parameters=find_unused_parameters,
|
|
check_reduction=check_reduction,
|
|
gradient_as_bucket_view=gradient_as_bucket_view,
|
|
static_graph=static_graph,
|
|
)
|
|
|
|
def support_no_sync(self) -> bool:
|
|
return True
|
|
|
|
def support_lora(self) -> bool:
|
|
return True
|
|
|
|
def control_precision(self) -> bool:
|
|
return False
|
|
|
|
def supported_precisions(self) -> List[str]:
|
|
return ["fp16", "fp16_apex", "bf16", "fp8"]
|
|
|
|
def control_device(self) -> bool:
|
|
return True
|
|
|
|
def supported_devices(self) -> List[str]:
|
|
return ["cuda", "npu"]
|
|
|
|
def configure(
|
|
self,
|
|
model: nn.Module,
|
|
optimizer: Optional[Optimizer] = None,
|
|
criterion: Optional[Callable] = None,
|
|
dataloader: Optional[DataLoader] = None,
|
|
lr_scheduler: Optional[LRScheduler] = None,
|
|
) -> Tuple[nn.Module, OptimizerWrapper, Callable, DataLoader, LRScheduler]:
|
|
# cast model to cuda
|
|
model = model.to(get_current_device())
|
|
|
|
# convert model to sync bn
|
|
model = nn.SyncBatchNorm.convert_sync_batchnorm(model, None)
|
|
|
|
# wrap the model with PyTorch DDP
|
|
model = TorchDDPModel(model, **self.ddp_kwargs)
|
|
|
|
if optimizer is not None and not isinstance(optimizer, OptimizerWrapper):
|
|
optimizer = OptimizerWrapper(optimizer)
|
|
|
|
return model, optimizer, criterion, dataloader, lr_scheduler
|
|
|
|
def control_checkpoint_io(self) -> bool:
|
|
return True
|
|
|
|
def get_checkpoint_io(self) -> CheckpointIO:
|
|
return TorchDDPCheckpointIO()
|
|
|
|
def no_sync(self, model: nn.Module, optimizer: OptimizerWrapper) -> Iterator[None]:
|
|
assert isinstance(model, TorchDDPModel), "Model is not boosted by TorchDDPPlugin."
|
|
return model.module.no_sync()
|
|
|
|
def enable_lora(
|
|
self,
|
|
model: nn.Module,
|
|
pretrained_dir: Optional[str] = None,
|
|
lora_config: Optional[Dict] = None,
|
|
bnb_quantization_config: Optional[BnbQuantizationConfig] = None,
|
|
) -> nn.Module:
|
|
from peft import PeftModel, get_peft_model
|
|
|
|
if bnb_quantization_config is not None:
|
|
model = quantize_model(model, bnb_quantization_config)
|
|
|
|
assert not isinstance(model, TorchDDPModel), "Lora should be enabled before boosting the model."
|
|
if pretrained_dir is None:
|
|
return get_peft_model(model, lora_config)
|
|
else:
|
|
return PeftModel.from_pretrained(model, pretrained_dir, is_trainable=True)
|