mirror of https://github.com/hpcaitech/ColossalAI
166 lines
5.9 KiB
Python
166 lines
5.9 KiB
Python
import uuid
|
|
from dataclasses import asdict
|
|
from typing import List
|
|
|
|
import torch
|
|
import torch.fx
|
|
from torch.fx import GraphModule
|
|
from torch.fx.node import Node
|
|
|
|
from colossalai.auto_parallel.meta_profiler import ShardMetaInfo
|
|
from colossalai.auto_parallel.passes.constants import OUTPUT_SAVED_MOD, OUTPUT_SAVED_OPS
|
|
from colossalai.fx._compatibility import compatibility
|
|
from colossalai.fx.profiler import GraphInfo
|
|
|
|
|
|
def _normalize_tuple(x):
|
|
if not isinstance(x, tuple):
|
|
return (x,)
|
|
return x
|
|
|
|
|
|
@compatibility(is_backward_compatible=False)
|
|
class MetaInfoProp:
|
|
def __init__(self, module: GraphModule) -> None:
|
|
self.module = module
|
|
self.func_dict = {
|
|
"placeholder": self.placeholder_handler,
|
|
"get_attr": self.get_attr_handler,
|
|
"output": self.output_handler,
|
|
"call_function": self.node_handler,
|
|
"call_module": self.node_handler,
|
|
"call_method": self.node_handler,
|
|
}
|
|
|
|
def _set_data_ptr(self, x):
|
|
"""
|
|
Set uuid to tensor
|
|
"""
|
|
if isinstance(x, torch.Tensor):
|
|
if not x.data_ptr():
|
|
data_ptr = uuid.uuid4()
|
|
x.data_ptr = lambda: data_ptr
|
|
|
|
def _is_inplace(self, node: Node):
|
|
"""
|
|
Check if the node is inplace operation.
|
|
"""
|
|
if node.op == "call_module":
|
|
return node.graph.owning_module.get_submodule(node.target).__class__ in OUTPUT_SAVED_MOD
|
|
elif node.op == "call_function":
|
|
return node.target in OUTPUT_SAVED_OPS
|
|
return False
|
|
|
|
def run(self) -> GraphModule:
|
|
"""
|
|
Run the meta information propagation pass on the module.
|
|
"""
|
|
for node in self.module.graph.nodes:
|
|
node: Node
|
|
self.func_dict[node.op](node)
|
|
|
|
@compatibility(is_backward_compatible=False)
|
|
def placeholder_handler(self, node: Node) -> None:
|
|
"""
|
|
Handle the placeholder node.
|
|
"""
|
|
graph_info = GraphInfo()
|
|
out = _normalize_tuple(getattr(node, "_meta_data", None))
|
|
graph_info.fwd_out = list(out) if out[0] is not None else []
|
|
node.meta = {**asdict(graph_info)}
|
|
|
|
@compatibility(is_backward_compatible=False)
|
|
def get_attr_handler(self, node: Node) -> None:
|
|
"""
|
|
Handle the get_attr node.
|
|
"""
|
|
graph_info = GraphInfo()
|
|
node.meta = {**asdict(graph_info)}
|
|
|
|
@compatibility(is_backward_compatible=False)
|
|
def output_handler(self, node: Node) -> None:
|
|
"""
|
|
Handle the output node.
|
|
"""
|
|
graph_info = GraphInfo()
|
|
output_tensors = []
|
|
for par in node._input_nodes:
|
|
if par.meta:
|
|
output_tensors += par.meta["fwd_out"]
|
|
graph_info.fwd_in = output_tensors
|
|
node.meta = {**asdict(graph_info)}
|
|
|
|
@compatibility(is_backward_compatible=False)
|
|
def node_handler(self, node: Node) -> None:
|
|
"""
|
|
Handle other kind of nodes
|
|
"""
|
|
assert hasattr(node, "best_strategy_info"), f"Cannot find best_strategy_info in node {node}, {node.op}"
|
|
graph_info = GraphInfo()
|
|
meta_info = node.best_strategy_info
|
|
meta_info: ShardMetaInfo
|
|
|
|
# set data_ptr for input_tensor in ShardMetaInfo class
|
|
input_tensors: List[torch.Tensor] = meta_info.fwd_in
|
|
buffer_tensors: List[torch.Tensor] = meta_info.fwd_buffer
|
|
output_tensors: List[torch.Tensor] = meta_info.fwd_out
|
|
|
|
if self._is_inplace(node):
|
|
# inplace operation will not create new tensor, and it only has one parent node
|
|
# TODO: Verify this observation
|
|
# set data_ptr for input_tensor, buffer_tensor and output_tensor of current node
|
|
parent_node = list(node._input_nodes.keys())[0]
|
|
parent_tensor = parent_node.meta.get("fwd_out")[0]
|
|
parent_tensor: torch.Tensor
|
|
for tensor in input_tensors:
|
|
tensor.data_ptr = parent_tensor.data_ptr
|
|
for tensor in buffer_tensors:
|
|
tensor.data_ptr = parent_tensor.data_ptr
|
|
for tensor in output_tensors:
|
|
tensor.data_ptr = parent_tensor.data_ptr
|
|
|
|
else:
|
|
for par in node._input_nodes:
|
|
# set data_ptr for the input_tensor of current node from the output_tensor of its parent node
|
|
for tensor in par.meta.get("fwd_out", []):
|
|
tensor: torch.Tensor
|
|
target_input_tensor = next(
|
|
(x for x in input_tensors if not x.data_ptr() and x.shape == tensor.shape), None
|
|
)
|
|
if target_input_tensor is not None:
|
|
target_input_tensor.data_ptr = tensor.data_ptr
|
|
|
|
# set data_ptr for tensor in input_tensor that is not set
|
|
for tensor in input_tensors:
|
|
if not tensor.data_ptr():
|
|
self._set_data_ptr(tensor)
|
|
|
|
# set data_ptr for buffer_tensor
|
|
for tensor in buffer_tensors:
|
|
self._set_data_ptr(tensor)
|
|
|
|
# set data_ptr for output_tensor
|
|
for tensor in output_tensors:
|
|
self._set_data_ptr(tensor)
|
|
|
|
# attach them to graph_info
|
|
graph_info.fwd_in = input_tensors
|
|
graph_info.fwd_tmp = buffer_tensors
|
|
graph_info.fwd_out = output_tensors
|
|
|
|
# fetch other memory information
|
|
memory_cost = meta_info.memory_cost
|
|
graph_info.fwd_mem_tmp = memory_cost.fwd.temp
|
|
graph_info.fwd_mem_out = memory_cost.fwd.activation
|
|
graph_info.bwd_mem_tmp = memory_cost.bwd.temp
|
|
graph_info.bwd_mem_out = memory_cost.bwd.activation
|
|
|
|
# fetch flop information
|
|
# here we use fwd_time and bwd_time to deal with the case that
|
|
# communication cost is a float
|
|
compute_cost = meta_info.compute_cost
|
|
graph_info.fwd_time = compute_cost.fwd
|
|
graph_info.bwd_time = compute_cost.bwd
|
|
|
|
node.meta = {**asdict(graph_info)}
|