ColossalAI/colossalai/accelerator/npu_accelerator.py

289 lines
9.2 KiB
Python

#!/usr/bin/env python
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
import torch.distributed as dist
from .base_accelerator import BaseAccelerator
try:
import torch_npu # noqa
except ImportError:
pass
__all__ = ["NpuAccelerator"]
class NpuAccelerator(BaseAccelerator):
"""
Accelerator class for Huawei NPU devices.
"""
def __init__(self):
super().__init__(name="npu", communication_backend="hccl", is_synchronous=False)
# =======================
# device APIs
# =======================
def get_version(self) -> str:
"""
Return the version of the accelerator which torch is built against.
"""
return torch.version.cann
def get_current_device(self) -> torch.device:
"""
Return the current device.
"""
return torch.device(f"npu:{torch.npu.current_device()}")
def current_device(self) -> int:
"""
Return the current device index.
"""
return torch.npu.current_device()
def set_device(self, device: Optional[Union[torch.device, int]] = None) -> None:
"""
Bind the current process to a device.
"""
if device is None:
if not dist.is_initialized():
raise RuntimeError("Cannot get current device when distributed is not initialized.")
device = dist.get_rank() % self.device_count()
torch.npu.set_device(device)
def get_device_name(self, device: Union[torch.device, int]) -> str:
"""
Return the name of the device.
"""
return torch.npu.get_device_name(device)
def synchronize(self, device: Union[torch.device, int] = None):
"""
Synchronize the current process.
"""
torch.npu.synchronize(device)
def is_available(self):
"""
Check if the accelerator is available.
"""
return torch.npu.is_available()
def device_count(self):
"""
Return the number of devices on the machine.
"""
return torch.npu.device_count()
def get_device_capability(self, device=None) -> Tuple[int, int]:
"""
Gets the npu capability of a device.
"""
return torch.npu.get_device_capability(device)
def get_device_name(self, device=None) -> str:
"""
Gets the name of a device.
"""
return torch.npu.get_device_name(device)
def get_device_properties(self, device):
"""
Gets the properties of a device.
"""
return torch.npu.get_device_properties(device)
def utilization(self, device=None) -> int:
"""
Returns the percent of time over the past sample period during which one or more kernels was executing on the GPU as given by nvidia-smi
"""
return torch.npu.utilization(device)
# =======================
# random number generator APIs
# =======================
def get_rng_state(self, device="npu") -> torch.Tensor:
"""
Returns the random number generator state of the specified GPU as a ByteTensor.
"""
return torch.npu.get_rng_state(device)
def get_rng_state_all(self) -> List[torch.Tensor]:
"""
Returns a list of ByteTensor representing the random number states of all devices.
"""
return torch.npu.get_rng_state_all()
def set_rng_state(self, new_state: torch.ByteTensor, device: str = "npu") -> None:
"""
Sets the random number generator state of the specified GPU.
"""
torch.npu.set_rng_state(new_state, device)
def set_rng_state_all(self, new_states: List[torch.ByteTensor]) -> None:
"""
Sets the random number generator state of all devices.
"""
torch.npu.set_rng_state_all(new_states)
def manual_seed(self, seed: int) -> None:
"""
Sets the seed for generating random numbers for the current GPU.
"""
torch.npu.manual_seed(seed)
def manual_seed_all(self, seed: int) -> None:
"""
Set the random seed for the all processes.
"""
torch.npu.manual_seed_all(seed)
def seed(self) -> None:
"""
Sets the seed for generating random numbers to a random number for the current GPU.
"""
torch.npu.seed()
def seed_all(self) -> None:
"""
Sets the seed for generating random numbers to a random number on all GPUs.
"""
torch.npu.seed_all()
def initial_seed(self) -> int:
"""
Returns the current random seed of the current GPU.
"""
return torch.npu.initial_seed()
# =======================
# memory management APIs
# =======================
def empty_cache(self) -> None:
"""
Releases all unoccupied cached memory currently held by the caching allocator so that those can be used in other GPU application and visible in nvidia-smi.
"""
torch.npu.empty_cache()
def memory_stats(self, device=None) -> Dict[str, Any]:
"""
Returns a dictionary of npu memory allocator statistics for a given device.
"""
return torch.npu.memory_stats(device=device)
def memory_summary(self, device=None, abbreviated=False) -> str:
"""
Returns a human-readable printout of the current memory allocator statistics for a given device.
"""
return torch.npu.memory_summary(device=device, abbreviated=abbreviated)
def memory_snapshot(self):
"""
Returns a snapshot of the npu memory allocator state across all devices.
"""
return torch.npu.memory_snapshot()
def memory_allocated(self, device=None) -> int:
"""
Returns the current GPU memory occupied by tensors in bytes for a given device.
"""
return torch.npu.memory_allocated(device=device)
def max_memory_allocated(self, device=None) -> int:
"""
Returns the maximum GPU memory occupied by tensors in bytes for a given device.
"""
return torch.npu.max_memory_allocated(device=device)
def reset_max_memory_allocated(self, device=None) -> None:
"""
Resets the starting point in tracking maximum GPU memory occupied by tensors for a given device.
"""
torch.npu.reset_max_memory_allocated(device=device)
def reset_max_memory_cached(self, device=None) -> None:
"""
Resets the starting point in tracking maximum GPU memory managed by the caching allocator for a given device.
"""
torch.npu.reset_max_memory_cached(device=device)
def memory_reserved(self, device=None) -> int:
"""
Returns the current GPU memory managed by the caching allocator in bytes for a given device.
"""
return torch.npu.memory_reserved(device=device)
def max_memory_reserved(self, device=None) -> int:
"""
Returns the maximum GPU memory managed by the caching allocator in bytes for a given device.
"""
return torch.npu.max_memory_reserved(device=device)
def set_per_process_memory_fraction(self, fraction: float, device=None) -> None:
"""
Set memory fraction for a process.
"""
torch.npu.set_per_process_memory_fraction(fraction, device=device)
def reset_peak_memory_stats(self, device=None) -> None:
"""
Resets the "peak" stats tracked by the npu memory allocator.
"""
torch.npu.reset_peak_memory_stats(device=device)
# =======================
# streams and events APIs
# =======================
def Stream(self, device=None, priority=0, **kwargs):
"""
A npu stream is a linear sequence of execution that belongs to a specific device, independent from other streams. See npu-semantics for details.
"""
return torch.npu.Stream(device, priority, **kwargs)
def Event(self, enable_timing: bool = False, blocking: bool = False, interprocess: bool = False):
"""
npu events are synchronization markers that can be used to monitor the device's progress, to accurately measure timing, and to synchronize npu streams.
"""
return torch.npu.Event(enable_timing, blocking, interprocess)
def current_stream(self, device=None):
"""
Returns the currently selected Stream for a given device.
"""
return torch.npu.current_stream(device)
def default_stream(self, device=None):
"""
Returns the default Stream for a given device.
"""
return torch.npu.default_stream(device)
def set_stream(self, stream_):
"""
Sets the current stream.This is a wrapper API to set the stream.
"""
torch.npu.set_stream(stream_)
def stream(self, stream_):
"""
Wrapper around the Context-manager StreamContext that selects a given stream.
"""
return torch.npu.stream(stream_)
# =======================
# amp APIs
# =======================
def autocast(
self, enabled: bool = True, dtype: torch.dtype = torch.float16, cache_enabled: bool = True
) -> Callable:
"""
Return autocast function
"""
return torch.npu.amp.autocast(enabled=enabled, dtype=dtype, cache_enabled=cache_enabled)