mirror of https://github.com/hpcaitech/ColossalAI
169 lines
5.3 KiB
Python
169 lines
5.3 KiB
Python
"""
|
|
If FX.Graph is traced for auto-parallel module, some extra node will be added during
|
|
graph construction to deal with the compatibility between bias-addition and all-reduce.
|
|
"""
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch.nn.modules.utils import _pair, _single, _triple
|
|
|
|
from .tracer import register_tracer_impl
|
|
|
|
__all__ = []
|
|
|
|
|
|
@register_tracer_impl(F.linear, name="_bias_addition_impl")
|
|
def linear_impl(input, weight, bias=None):
|
|
if bias is None:
|
|
return F.linear(input, weight)
|
|
else:
|
|
return F.linear(input, weight) + bias
|
|
|
|
|
|
@register_tracer_impl(F.conv1d, name="_bias_addition_impl")
|
|
def conv1d_impl(input, weight, bias=None, stride=_single(1), padding=_single(0), dilation=_single(1), groups=1):
|
|
if bias is None:
|
|
return F.conv1d(input, weight, stride=stride, padding=padding, dilation=dilation, groups=groups)
|
|
else:
|
|
return F.conv1d(input, weight, stride=stride, padding=padding, dilation=dilation, groups=groups) + bias.reshape(
|
|
(-1, 1)
|
|
)
|
|
|
|
|
|
@register_tracer_impl(F.conv2d, name="_bias_addition_impl")
|
|
def conv2d_impl(input, weight, bias=None, stride=_pair(1), padding=_pair(0), dilation=_pair(1), groups=1):
|
|
if bias is None:
|
|
return F.conv2d(input, weight, stride=stride, padding=padding, dilation=dilation, groups=groups)
|
|
else:
|
|
return F.conv2d(input, weight, stride=stride, padding=padding, dilation=dilation, groups=groups) + bias.reshape(
|
|
(-1, 1, 1)
|
|
)
|
|
|
|
|
|
@register_tracer_impl(F.conv3d, name="_bias_addition_impl")
|
|
def conv3d_impl(input, weight, bias=None, stride=_triple(1), padding=_triple(0), dilation=_triple(1), groups=1):
|
|
if bias is None:
|
|
return F.conv3d(input, weight, stride=stride, padding=padding, dilation=dilation, groups=groups)
|
|
else:
|
|
return F.conv3d(input, weight, stride=stride, padding=padding, dilation=dilation, groups=groups) + bias.reshape(
|
|
(-1, 1, 1, 1)
|
|
)
|
|
|
|
|
|
@register_tracer_impl(F.conv_transpose1d, name="_bias_addition_impl")
|
|
def conv_transpose1d_impl(
|
|
input,
|
|
weight,
|
|
bias=None,
|
|
stride=_single(1),
|
|
padding=_single(0),
|
|
output_padding=_single(0),
|
|
groups=1,
|
|
dilation=_single(1),
|
|
):
|
|
if bias is None:
|
|
return F.conv_transpose1d(
|
|
input,
|
|
weight,
|
|
stride=stride,
|
|
padding=padding,
|
|
output_padding=output_padding,
|
|
groups=groups,
|
|
dilation=dilation,
|
|
)
|
|
else:
|
|
return F.conv_transpose1d(
|
|
input,
|
|
weight,
|
|
stride=stride,
|
|
padding=padding,
|
|
output_padding=output_padding,
|
|
groups=groups,
|
|
dilation=dilation,
|
|
) + bias.reshape((-1, 1))
|
|
|
|
|
|
@register_tracer_impl(F.conv_transpose2d, name="_bias_addition_impl")
|
|
def conv_transpose2d_impl(
|
|
input, weight, bias=None, stride=_pair(1), padding=_pair(0), output_padding=_pair(0), groups=1, dilation=_pair(1)
|
|
):
|
|
if bias is None:
|
|
return F.conv_transpose2d(
|
|
input,
|
|
weight,
|
|
stride=stride,
|
|
padding=padding,
|
|
output_padding=output_padding,
|
|
groups=groups,
|
|
dilation=dilation,
|
|
)
|
|
else:
|
|
return F.conv_transpose2d(
|
|
input,
|
|
weight,
|
|
stride=stride,
|
|
padding=padding,
|
|
output_padding=output_padding,
|
|
groups=groups,
|
|
dilation=dilation,
|
|
) + bias.reshape((-1, 1, 1))
|
|
|
|
|
|
@register_tracer_impl(F.conv_transpose3d, name="_bias_addition_impl")
|
|
def conv_transpose3d_impl(
|
|
input,
|
|
weight,
|
|
bias=None,
|
|
stride=_triple(1),
|
|
padding=_triple(0),
|
|
output_padding=_triple(0),
|
|
groups=1,
|
|
dilation=_triple(1),
|
|
):
|
|
if bias is None:
|
|
return F.conv_transpose3d(
|
|
input,
|
|
weight,
|
|
stride=stride,
|
|
padding=padding,
|
|
output_padding=output_padding,
|
|
groups=groups,
|
|
dilation=dilation,
|
|
)
|
|
else:
|
|
return F.conv_transpose3d(
|
|
input,
|
|
weight,
|
|
stride=stride,
|
|
padding=padding,
|
|
output_padding=output_padding,
|
|
groups=groups,
|
|
dilation=dilation,
|
|
) + bias.reshape((-1, 1, 1, 1))
|
|
|
|
|
|
@register_tracer_impl(torch.addmm, name="_bias_addition_impl")
|
|
@register_tracer_impl(torch.Tensor.addmm, name="_bias_addition_impl")
|
|
def addmm_impl(input, mat1, mat2, beta=1, alpha=1):
|
|
if alpha != 1 and beta != 1:
|
|
return F.linear(mat1, mat2.transpose(0, 1)) * alpha + input * beta
|
|
elif alpha != 1:
|
|
return F.linear(mat1, mat2.transpose(0, 1)) * alpha + input
|
|
elif beta != 1:
|
|
return F.linear(mat1, mat2.transpose(0, 1)) + input * beta
|
|
else:
|
|
return F.linear(mat1, mat2.transpose(0, 1)) + input
|
|
|
|
|
|
@register_tracer_impl(torch.addbmm, name="_bias_addition_impl")
|
|
@register_tracer_impl(torch.Tensor.addbmm, name="_bias_addition_impl")
|
|
def addbmm_impl(input, batch1, batch2, beta=1, alpha=1):
|
|
if alpha != 1 and beta != 1:
|
|
return torch.bmm(batch1, batch2.transpose(1, 2)) * alpha + input * beta
|
|
elif alpha != 1:
|
|
return torch.bmm(batch1, batch2.transpose(1, 2)) * alpha + input
|
|
elif beta != 1:
|
|
return torch.bmm(batch1, batch2.transpose(1, 2)) + input * beta
|
|
else:
|
|
return torch.bmm(batch1, batch2.transpose(1, 2)) + input
|