ColossalAI/tests/test_analyzer/test_fx/test_shape_prop.py

66 lines
2.1 KiB
Python

import pytest
import torch
import torchvision.models as tm
from packaging import version
from colossalai.testing.utils import parameterize
from tests.test_analyzer.test_fx.zoo import tm_models, tmm_models
try:
from colossalai._analyzer._subclasses import MetaTensorMode
from colossalai._analyzer.fx import symbolic_trace
from colossalai._analyzer.fx.passes.shape_prop import shape_prop_pass
from colossalai._analyzer.fx.symbolic_profile import register_shape_impl
@register_shape_impl(torch.nn.functional.linear)
def linear_impl(*args, **kwargs):
assert True
return torch.nn.functional.linear(*args, **kwargs)
except:
pass
def _check_gm_validity(gm: torch.fx.GraphModule):
for node in gm.graph.nodes:
assert node.meta['info'].outputs, f'In {gm.__class__.__name__}, {node} has no output shape.'
if node.op in [
'call_module', # can apply to params
'call_function', # can apply to params
'call_method', # can apply to params
]:
assert hasattr(node.meta['info'], 'inputs'), f'In {gm.__class__.__name__}, {node} has no input shape.'
@pytest.mark.skipif(version.parse(torch.__version__) < version.parse('1.12.0'), reason='torch version < 12')
@parameterize('m', tm_models)
def test_torchvision_shape_prop(m):
with MetaTensorMode():
model = m()
data = torch.rand(100, 3, 224, 224)
meta_args = {
"x": data,
}
gm = symbolic_trace(model, meta_args=meta_args)
shape_prop_pass(gm, data)
_check_gm_validity(gm)
@pytest.mark.skipif(version.parse(torch.__version__) < version.parse('1.12.0'), reason='torch version < 12')
@parameterize('m', tmm_models)
def test_timm_shape_prop(m):
with MetaTensorMode():
model = m()
data = torch.rand(100, 3, 224, 224)
meta_args = {
"x": data,
}
gm = symbolic_trace(model, meta_args=meta_args)
shape_prop_pass(gm, data)
_check_gm_validity(gm)
if __name__ == "__main__":
test_torchvision_shape_prop()
test_timm_shape_prop()